• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new fuzzy linguistic approach to qualitative cross impact analysis

[PDF] self_archived_applied_soft_computing_2014.pdf (532.9Kb)
Identificadores
URI: https://hdl.handle.net/10481/86081
DOI: 10.1016/j.asoc.2014.06.025
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Villacorta Iglesias, Pablo José; Masegosa Arredondo, Antonio David; Castellanos, Dagoberto; Lamata Jiménez, María Teresa
Editorial
Elsevier
Materia
scenario planning
 
MICMAC
 
Cross Impact Analysis
 
Computing with words
 
Fuzzy sets
 
Linguistic labels
 
Date
2014-11
Referencia bibliográfica
Villacorta, P.J., Masegosa, A.D., Castellanos, D., Lamata, M.T. (2014) A new fuzzy linguistic approach to qualitative Cross Impact Analysis. Applied Soft Computing 24, 19-30. https://doi.org/10.1016/j.asoc.2014.06.025.
Sponsorship
Grupo de investigación TIC-169: Modelos de Decisión y Optimización
Abstract
Scenario Planning helps explore how the possible futures may look like and establishing plans to deal with them, something essential for any company, institution or country that wants to be competitive in this globalize world. In this context, Cross Impact Analysis is one of the most used methods to study the possible futures or scenarios by identifying the system's variables and the role they play in it. In this paper, we focus on the method called MICMAC (Impact Matrix Cross-Reference Multiplication Applied to a Classification), for which we propose a new version based on Computing with Words techniques and fuzzy sets, namely Fuzzy Linguistic MICMAC (FLMICMAC). The new method allows linguistic assessment of the mutual influence between variables, captures and handles the vagueness of these assessments, expresses the results linguistically, provides information in absolute terms and incorporates two new ways to visualize the results. Our proposal has been applied to a real case study and the results have been compared to the original MICMAC, showing the superiority of FLMICMAC as it gives more robust, accurate, complete and easier to interpret information, which can be very useful for a better understanding of the system.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback