• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of activation pattern estimates and statistical significance tests in fMRI decoding analysis

[PDF] Influence of activation.pdf (4.631Mb)
Identificadores
URI: https://hdl.handle.net/10481/85910
DOI: 10.1016/j.jneumeth.2018.06.017
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Arco Martín, Juan Eloy; González García, Carlos; Díaz Gutiérrez, Paloma; Ramírez Pérez De Inestrosa, Javier; Ruz Cámara, María
Fecha
2018
Patrocinador
Spanish Ministry of Science and Innovation through grants PSI2013-45567-P and PSI2016-78236-P
Resumen
The use of Multi-Voxel Pattern Analysis (MVPA) has increased considerably in recent functional magnetic resonance imaging (fMRI) studies. A crucial step consists in the choice of a method for the estimation of responses. However, a systematic comparison of the different estimation alternatives and their adequacy to predominant experimental design is missing. In the current study we contrasted three pattern estimation methods: Least- Squares Unitary (LSU), based on run-wise estimation, and Least-Squares All (LSA) and Least-Squares Separate (LSS), which rely on trial-wise estimation. We contrasted the efficiency of these methods in an experiment where sustained activity needed to be isolated from zero-duration events as well as in a block- design approach and in a event-related design. We evaluated the sensitivity of the t-test with two non-parametric methods based on permutation testing: one proposed in Stelzer et al. (2013), equivalent to perform a permutation in each voxel separately and the Threshold-Free Cluster Enhancement. LSS resulted the most reliable approach to address the large overlap of signal among close events in the event-related designs. We found a larger sensitivity of Stelzers method in all settings, especially in the event-related designs, where voxels close to surpass the statistical threshold in other approaches were now marked as informative regions. Our results provide evidence that LSS is the most reliable approach for unmixing events with different duration and large overlap of signal. This is consistent with previous studies where LSS handles large collinearity better than other methods. Moreover, Stelzers potentiates this better estimation with its large sensitivity.
Colecciones
  • DTSTC - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias