Show simple item record

dc.contributor.authorVazquez-Perez, Francisco J.
dc.contributor.authorGila-Vilchez, Cristina 
dc.contributor.authorLeon-Cecilla, Alberto
dc.contributor.authorÁlvarez de Cienfuegos, Luis
dc.contributor.authorBorin, Dmitry
dc.contributor.authorOdenbach, Stefan
dc.contributor.authorMartin, James E.
dc.contributor.authorLopez-Lopez, Modesto T
dc.date.accessioned2023-11-27T09:30:17Z
dc.date.available2023-11-27T09:30:17Z
dc.date.issued2023-11-04
dc.identifier.citationVazquez-Perez, F. J., Gila-Vilchez, C., Leon-Cecilla, A., Álvarez de Cienfuegos, L., Borin, D., Odenbach, S., Martin, J. E. & Lopez-Lopez, M. T. (2023). Fabrication and Actuation of Magnetic Shape-Memory Materials. ACS Applied Materials & Interfaces. 53017–53030, https://doi.org/10.1021/acsami.3c14091es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85871
dc.description.abstractSoft actuators are deformable materials that change their dimensions and/or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common material for magnetic soft actuators. In this paper, we demonstrate the fabrication and actuation of magnetic shape-memory materials based on hydrogels containing field-structured magnetic particles. These actuators are formed by placing the pregel dispersion into a mold of the desired on-field shape and exposing this to a homogeneous magnetic field until the gel point is reached. At this point the material may be removed from the mold and fully gelled in the desired off-field shape. The resultant magnetic shape-memory material then transitions between these two shapes when subjected to successive cycles of a homogeneous magnetic field, acting as a large deformation actuator. For actuators that are planar in the off-field state, this can result in significant bending to return to the on-field state. In addition, it is possible to make shape-memory materials that twist under the application of a magnetic field. For these torsional actuators, both experimental and theoretical results are given.es_ES
dc.description.sponsorshipDepartamento de Física Aplicadaes_ES
dc.description.sponsorshipGrupo FQM144es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidadeses_ES
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)es_ES
dc.language.isoenges_ES
dc.publisherACS Publicationses_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectActuatorses_ES
dc.subjectBiopolymerses_ES
dc.subjectComposites es_ES
dc.subjectHydrogelses_ES
dc.subjectMagnetic propertieses_ES
dc.titleFabrication and Actuation of Magnetic Shape-Memory Materialses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1021/acsami.3c14091
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License