Prescribing nearly constant curvatures on balls
Metadatos
Mostrar el registro completo del ítemEditorial
Cornell University
Materia
Prescribed curvature Conformal metrics Ljapunov-Schmidt construction
Fecha
2023-09-24Referencia bibliográfica
Published version: Battaglia, L. et al. Prescribing nearly constant curvatures on balls. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 2023. [https://doi.org/10.1017/prm.2023.111]
Patrocinador
Spanish Ministry of Universities; Next Generation EU funds PID2021-122122NB-I00; University of Granada; FEDER-MINECO; J. Andalucia FQM-116; University “Sapienza Università di Roma”; Istituto Nazionale di Alta Matematica (INdAM); CUP E55F22000270001Resumen
In this paper we address two boundary cases of the classical Kazdan-
Warner problem. More precisely, we consider the problem of prescribing the Gaussian
and boundary geodesic curvature on a disk of R2, and the scalar and mean curvature
on a ball in higher dimensions, via a conformal change of the metric. We deal with the
case of negative interior curvature and positive boundary curvature. Using a Ljapunov-
Schmidt procedure, we obtain new existence results when the prescribed functions are
close to constants.





