Mostrar el registro sencillo del ítem

dc.contributor.authorTestón Martínez, Sergio
dc.contributor.authorHuertas-Roldán, Teresa
dc.contributor.authorKnoll, Pamela
dc.contributor.authorSainz Díaz, Claro Ignacio
dc.contributor.authorCartwright, Julyan H. E. 
dc.date.accessioned2023-11-21T13:10:00Z
dc.date.available2023-11-21T13:10:00Z
dc.date.issued2023-11-01
dc.identifier.citationTestón Martínez, S. et al. A microfluidic labyrinth self-assembled by a chemical garden. Phys. Chem. Chem. Phys., 2023, 25, 30469. [DOI: 10.1039/d3cp02929h]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85815
dc.descriptionL. M. B. was supported by JPL Topical Research & Technology Development and a NASA PECASE award; L. M. B's research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S. T. and T. H. thank the CSIC and Spanish Andalusian ‘Garantía Juvenil’ project AND21_IACT_M2_058. The authors would like to acknowledge the contributions of the European COST Action CA17120 supported by the EU Framework Programme Horizon 2020.es_ES
dc.description.abstractChemical gardens, self-assembling precipitates that spontaneously form when a metal salt is added to a solution of another precipitating anion, are of interest for various applications including producing reactive materials in controlled structures. Here, we report on two chemical garden reaction systems (CuCl2 and Cu(NO3)2 seed crystals submerged in sodium silicate) that produced self-assembled microfluidic labyrinths in a vertical 2D Hele-Shaw reactor. The formation of labyrinths as well as the specific growth modes of the precipitate were dependent on the silicate concentration: CuCl2 labyrinths formed only at 3 and 4 M silicate and Cu(NO3)2 labyrinths formed only at 4 and 5 M silicate. The labyrinth structures contained silicate on the exterior and crystalline material interpreted as hydrated minerals from the metal salt in their interiors. The bubble-guided tubes that form labyrinths can be controlled by changing the angle of the 2D reaction cell; this suggests that future experiments of this type could form self-organizing structures with controlled composition and orientation for use in microfluidics and various materials science applications.es_ES
dc.description.sponsorshipJPL Topical Research & Technology Developmentes_ES
dc.description.sponsorshipNASA PECASEes_ES
dc.description.sponsorshipNational Aeronautics and Space Administration (80NM0018D0004)es_ES
dc.description.sponsorshipCSICes_ES
dc.description.sponsorshipSpanish Andalusian ‘Garantía Juvenil’ AND21_IACT_M2_058es_ES
dc.description.sponsorshipEuropean COST Action CA17120es_ES
dc.description.sponsorshipEU Framework Programme Horizon 2020es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleA microfluidic labyrinth self-assembled by a chemical gardenes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1039/d3cp02929h
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional