Mostrar el registro sencillo del ítem

dc.contributor.authorArco Martín, Juan Eloy 
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorBroncano, Jordi
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2023-11-21T13:08:11Z
dc.date.available2023-11-21T13:08:11Z
dc.date.issued2022-10
dc.identifier.urihttps://hdl.handle.net/10481/85814
dc.description.abstractThe emergence of new technologies has changed the way clinicians perform diagnosis. Medical imaging play a crucial role in this process, given the amount of information that they usually provide as non-invasive techniques. Despite the high quality offered by these images and the expertise of clinicians, the diagnostic process is not a straightforward task since different pathologies can have similar signs and symptoms. For this reason, it is extremely useful to assist this process with the inclusion of an automatic tool that reduces the bias when analyzing this kind of images. In this work, we propose an ensemble classifier based on probabilistic Support Vector Machine (SVM) in order to identify relevant patterns while providing information about the reliability of the classification. Specifically, each image is divided into patches and features contained in each one of them are extracted by applying kernel principal component analysis (PCA). The use of base classifiers within an ensemble allows our system to identify the informative patterns regardless of their size or location. Decisions of each individual patch are then combined according to the reliability of each individual classification: the lower the uncertainty, the higher the contribution. Performance is evaluated in a real scenario where distinguishing between pneumonia patients and controls from chest Computed Tomography (CCT) images, yielding an accuracy of 97.86%. The large performance obtained and the simplicity of the system (use of deep learning in CCT images would highly increase the computational cost) evidence the applicability of our proposal in a real-world environment.es_ES
dc.description.sponsorshipProjects PGC2018-098813-B-C32 and RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, Innovación y Universidades”)es_ES
dc.description.sponsorshipUMA20-FEDERJA-086, A-TIC-080-UGR18 and P20 00525 (Consejer´ıa de econom´ıa y conocimiento, Junta de Andaluc´ıa)es_ES
dc.description.sponsorshipEuropean Regional Development Funds (ERDF)es_ES
dc.description.sponsorshipSpanish ”Ministerio de Universidades” through Margarita-Salas grantes_ES
dc.language.isoenges_ES
dc.subjectComputer-aided-diagnosises_ES
dc.subjectMedical imaginges_ES
dc.subjectPneumonia es_ES
dc.subjectProbabilistic machine learninges_ES
dc.subjectUncertainty es_ES
dc.titleProbabilistic Combination of Non-Linear Eigenprojections For Ensemble Classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TETCI.2022.3210582
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem