dc.contributor.author | Pérez Ramírez, Daniel | |
dc.contributor.author | Whiteman, D.N | |
dc.contributor.author | Veselovskii, I | |
dc.contributor.author | Colarco, P | |
dc.contributor.author | Korenski, M | |
dc.contributor.author | da Silva, A | |
dc.date.accessioned | 2023-11-17T07:55:10Z | |
dc.date.available | 2023-11-17T07:55:10Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Published version: Remote Sensing of Environment 222 (2019) 144–164 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/85745 | |
dc.description.abstract | This work focuses on the study and evaluation of the retrievals of aerosol complex refractive index
(m = m r + im i ) and single scattering albedo (SSA) from the inversion of multi-wavelength lidar measurements,
particularly of three backscattering coefficients (β) at 355, 532 and 1064 nm and two extinction coefficients (α)
at 355 and 532 nm, typically known as the stand-alone 3β + 2α lidar inversion. The focus is on the well-known
regularization technique for spherical particles. It is well known that constraints in the range of refractive indices
allowed in the inversion are essential, both for the real (m r ) and imaginary (m i ) parts, due to the under-de-
termined nature of the problem. Usually these constraints are fixed for a given set of inversions. Using a large
database of AERONET retrievals, correlations between retrieved m r and mi are observed and those correlations
together with results from the GOCART model are used to define optimized, case-dependent, constraints in the
stand-alone 3β + 2α lidar inversion. For each inversion performed, the optimized constraints are computed from
the 3β + 2α data using a-priori information of extinction-to-backscattered ratio (LR) and the Angstrom exponent
computed with α at 355 and 532 nm. The stand-alone 3β + 2α lidar inversion with optimized, case-dependent,
constraints is applied to airborne NASA LaRC HSRL-2 experimental measurements during DISCOVER-AQ. The
optimized constraints selected from the measured 3β + 2α are compared with the typing classification based on
additional multiwavelength depolarization measurements, showing consistency between aerosol size and ab-
sorption range and aerosol typing. Evaluations of the SSA retrieved by the stand-alone 3β + 2α lidar inversion
with optimized constraints are done by comparisons with correlative airborne in-situ measured SSA. The
agreement between both methodologies is satisfactory for most aerosol types as differences are within the uncertainties of each methodology. | es_ES |
dc.description.sponsorship | Marie Skłodowska-Curie Research Innovation and Staff Exchange (RISE) GRASP-ACE (grant agreement no 778349) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.title | Retrievals of aerosol single scattering albedo by multiwavelength lidar measurements: evaluations with nasa langley hsrl-2 during discover-aq field campaigns | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/MSC GRASP-ACE 778349 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.rse.2018.12.022 | |
dc.type.hasVersion | AM | es_ES |