Exclusive dielectron production in ultraperipheral Pb+Pb collisions at p sNN = 5.02 TeV with ATLAS
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Materia
Heavy Ion Experiments Heavy-Ion Collision
Fecha
2023-06-27Referencia bibliográfica
The ATLAS collaboration., Aad, G., Abbott, B. et al. Exclusive dielectron production in ultraperipheral Pb+Pb collisions at = 5.02 TeV with ATLAS. J. High Energ. Phys. 2023, 182 (2023). [https://doi.org/10.1007/JHEP06(2023)182]
Patrocinador
ANPCyT; YerPhI, Armenia; Australian Research Council; BMWFW, Austria; Austrian Science Fund (FWF); Azerbaijan National Academy of Sciences (ANAS); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Natural Sciences and Engineering Research Council of Canada (NSERC); NRC, Canada; Canada Foundation for Innovation; CERN; ANID, Chile; Chinese Academy of Sciences; Ministry of Science and Technology, China; National Natural Science Foundation of China (NSFC); Minciencias, Colombia; MEYS CR, Czech Republic; National Research Foundation of Korea; Danish Natural Science Research Council; Centre National de la Recherche Scientifique (CNRS); CEA-DRF/IRFU, France; SRNSFG, Georgia; Federal Ministry of Education & Research (BMBF); HGF, Germany; Max Planck Society; GSRI, Greece; RGC, China; Hong Kong SAR, China; Israel Science Foundation; Benoziyo Center, Israel; Istituto Nazionale di Fisica Nucleare (INFN); Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science; CNRST, Morocco; Netherlands Organization for Scientific Research (NWO) Netherlands Government; RCN, Norway; MEiN, Poland; Fundacao para a Ciencia e a Tecnologia (FCT); MNE/IFA, Romania; Ministry of Education, Science & Technological Development, Serbia; MSSR, Slovakia; Slovenian Research Agency - Slovenia; MIZS, Slovenia; DSI/NRF, South Africa; Spanish Government; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; Swiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; Ministry of Science and Technology, Taiwan; TENMAK, Turkiye; UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC); United States Department of Energy (DOE); National Science Foundation (NSF); BCKDF, Canada; CANARIE, Canada; Compute Canada, Canada; CRC, Canada; PRIMUS, Czech Republic 21/SCI/017; UNCE, Czech Republic SCI/013; COST, European Union; European Union (EU) European Research Council (ERC); European Union (EU) Marie Curie Actions; Horizon 2020, European Union; European Union (EU) Marie Curie Actions; Agence Nationale de la Recherche (ANR); German Research Foundation (DFG); Alexander von Humboldt Foundation; Herakleitos programme - EU-ESF, Greece; Thales Group; Aristeia programme - EU-ESF, Greece; Greek NSRF, Greece; BSF-NSF, Israel; MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN, Poland; Polish National Agency for Academic Exchange (NAWA); La Caixa Banking Foundation, Spain; CERCA Programme Generalitat de Catalunya, Spain; PROMETEO Programme Generalitat Valenciana, Spain; GenT Programme Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; Royal Society; Leverhulme TrustResumen
Exclusive production of dielectron pairs, γγ → e+e−, is studied using
= 1.72 nb−1 of data from ultraperipheral collisions of lead nuclei at
= 5.02 TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon–photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum
> 2.5 GeV, absolute electron pseudorapidity |ηe| < 2.5, dielectron invariant mass mee > 5 GeV, and dielectron transverse momentum
< 2 GeV. Differential cross-sections are measured as a function of mee, average
, absolute dielectron rapidity |yee|, and scattering angle in the dielectron rest frame, |cos θ*|, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be
μb. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs STARLIGHT and SUPERCHIC, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |yee| and |cos θ*| values.





