dc.contributor.author | Ortega Ríos, Rafael | |
dc.contributor.author | Ruiz Herrera, Alfonso | |
dc.date.accessioned | 2023-11-13T11:37:55Z | |
dc.date.available | 2023-11-13T11:37:55Z | |
dc.date.issued | 2023-11-01 | |
dc.identifier.citation | R. Ortega, A. Ruiz-Herrera. Prime ends dynamics on invariant Peano continua. Topology and its Applications 339 (2023) 10856. [https://doi.org/10.1016/j.topol.2023.108569] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/85624 | |
dc.description.abstract | The dynamics of a planar homeomorphism h is simple on any non-separating Peano continuum K that is invariant under h. This means that all limit sets on K are either fixed points or periodic orbits. The map h induces a homeomorphism h* on the space of prime ends associated to K. The goal of this paper is to show that in some cases the dynamics on prime ends can have a certain complexity. We construct a dissipative homeomorphism with attractor K and h* a Denjoy map. | es_ES |
dc.description.sponsorship | Spanish Government MICINN PID2021-128418NA-I00 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Attractor | es_ES |
dc.subject | Planar homeomorphism | es_ES |
dc.subject | Rotation | es_ES |
dc.title | Prime ends dynamics on invariant Peano continua | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1016/j.topol.2023.108569 | |
dc.type.hasVersion | VoR | es_ES |