Afficher la notice abrégée

dc.contributor.authorMaya Barbecho, Esperanza
dc.contributor.authorBaid, S.
dc.contributor.authorArias Peñalver, José María
dc.contributor.authorGarcía Ramos, José Enrique
dc.date.accessioned2023-11-07T12:00:49Z
dc.date.available2023-11-07T12:00:49Z
dc.date.issued2023-09-29
dc.identifier.citationE. Maya-Barbecho, S. Baid, J. M. Arias, and J. E. García-Ramos Phys. Rev. C 108, 034316[https://doi.org/10.1103/PhysRevC.108.03431]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85511
dc.description.abstractBackground: Even-even isotopes of Mo (Z = 42) and Ru (Z = 44) are nuclei close to the subshell closure at Z = 40, where shape coexistence plays a significant role. As a result, their spectroscopic properties are expected to resemble those of Sr (Z = 38) and Zr (Z = 40). Exploring the evolution of these properties as they move away from the subshell closure is of great interest. Purpose: The purpose of this study is to reproduce the spectroscopic properties of even-even 96–110 42Mo and 98–114 44Ru isotopes and to determine the influence of shape coexistence. Method: We employed the interacting boson model with configuration mixing as the framework to calculate all the observables for Mo and Ru isotopes. We considered two types of configurations: 0-particle–0-hole and 2-particle–2-hole excitations. The model parameters were determined using a least-squares fitting to match the excitation energies and the B(E2) transition rates. Results: We obtained the excitation energies, B(E2) values, two-neutron separation energies, nuclear radii, and isotope shifts for the entire chain of isotopes. Our theoretical results show good agreement with experimental data. Furthermore, we conducted a detailed analysis of the wave functions and obtained the mean-field energy surfaces and the nuclear deformation parameter, β, for all considered isotopes. Conclusions: Our findings reveal that shape coexistence plays a significant role inMo isotopes, with the crossing of intruder and regular configurations occurring at neutron number 60 (A = 102), which induces a quantum phase transition. In contrast, in Ru isotopes, the intruder states have minimal influence, remaining at higher energies. However, at neutron number 60, also a quantum phase transition occurs in Ru isotopes.es_ES
dc.description.sponsorshipConsejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (Spain) under Groups FQM-160es_ES
dc.description.sponsorshipFQM-370es_ES
dc.description.sponsorshipNo. P20-00617es_ES
dc.description.sponsorshipNo. P20-01247es_ES
dc.description.sponsorshipNo. US-1380840es_ES
dc.description.sponsorshipProjects No. PID2019-104002GB-C21es_ES
dc.description.sponsorshipNo. PID2019-104002GB-C22es_ES
dc.description.sponsorshipNo. PID2020-114687GB-I00es_ES
dc.description.sponsorshipNo. PID2022-136228NB-C21es_ES
dc.description.sponsorshipNo. PID2022-136228NB-C22es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/50110001103es_ES
dc.description.sponsorshipERDF A way of making Europees_ES
dc.description.sponsorshipCEAFMC and the Universidad de Huelva High Performance Computer (HPC@UHU)es_ES
dc.description.sponsorshipERDF/MINECO Project No. UNHU-15CE-2848es_ES
dc.language.isoenges_ES
dc.publisherE. Maya-Barbecho, S. Baid, J. M. Arias, and J. E. García-Ramos Phys. Rev. C 108, 034316es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAt the borderline of shape coexistence: Mo and Rues_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1103/PhysRevC.108.03431
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional