Afficher la notice abrégée

dc.contributor.authorArcadi, Giorgio
dc.contributor.authorBenincasa, Nico
dc.contributor.authorDjouadi, Abdelhak 
dc.contributor.authorKannike, Kristjan
dc.date.accessioned2023-11-06T09:05:12Z
dc.date.available2023-11-06T09:05:12Z
dc.date.issued2023-09-12
dc.identifier.citationGiorgio Arcadi, Nico Benincasa, Abdelhak Djouadi, and Kristjan Kannike. Two-Higgs-doublet-plus-pseudoscalar model: Collider, dark matter, and gravitational wave signals. Phys. Rev. D 108, 055010. [https://doi.org/10.1103/PhysRevD.108.055010]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85465
dc.descriptionWe thank Joosep Pata for helping us with cluster computation. This work is supported by the Estonian Research Council Grants No. PRG356 and No. PRG434, by the European Regional Development Fund and program Mobilitas Pluss Grants No. MOBTT5 and No. MOBTT86, and the ERDF CoE program Project No. TK133. A. D. is, in addition, supported by the Junta de Andalucia through the Talentia Senior program and Grants No. PID2021-128396NB-I00, No. A-FQM-211-UGR18, and No. P18-FR-4314 with ERDF.es_ES
dc.description.abstractWe perform a comprehensive study of a model in which the Higgs sector is extended to contain two Higgs doublet fields, with the four types of possibilities to couple to standard fermions, as well as an additional light pseudoscalar Higgs boson which mixes with the one of the two doublets. This two-Higgs-doublet-plus-pseudoscalar model includes also a stable isosinglet massive fermion that has the correct thermal relic abundance to account for the dark matter in the Universe. We summarize the theoretical constraints to which the model is subject and then perform a detailed study of the phenomenological constraints. In particular, we discuss the bounds from the LHC in the search for light and heavy scalar resonances and invisible states and those from high-precision measurements in the Higgs, electroweak, and flavor sectors, addressing the possibility of explaining the deviation from the standard expectation of the anomalous magnetic moment of the muon and the W-boson mass recently observed at Fermilab. We also summarize the astrophysical constraints from direct and indirect detection dark matter experiments. We finally conduct a thorough analysis of the cosmic phase transitions and the gravitational wave spectrum that are implied by the model and identify the parameter space in which the electroweak vacuum is reached after single and multiple phase transitions. We then discuss the prospects for observing the signal of such gravitational waves in near-future experiments such as the Laser Interferometer Space Antenna, Big Bang Observer, or Deci-hertz Interferometer Gravitational wave Observatory.es_ES
dc.description.sponsorshipEesti Teadusagentuur PRG356, PRG434 ETAges_ES
dc.description.sponsorshipEuropean Regional Development Fund MOBTT86, TK133 ERDFes_ES
dc.description.sponsorshipJunta de Andalucía A-FQM-211-UGR18, P18-FR-4314, PID2021-128396NB-I00es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTwo-Higgs-doublet-plus-pseudoscalar model: Collider, dark matter, and gravitational wave signalses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1103/PhysRevD.108.055010
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional