Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Casalé, Paloma
dc.contributor.authorAmaro Soriano, José Enrique 
dc.contributor.authorBarbaro, Maria B.
dc.date.accessioned2023-11-03T10:37:00Z
dc.date.available2023-11-03T10:37:00Z
dc.date.issued2023-09-06
dc.identifier.citationCasale, P.R.; Amaro, J.E.; Barbaro, M.B. Meson-Exchange Currents in Quasielastic Electron Scattering in a Generalized Superscaling Approach. Symmetry 2023, 15, 1709. [https://doi.org/10.3390/sym15091709]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85441
dc.descriptionThis work is supported by: Grant PID2020-114767GB-I00 funded by MCIN/AEI/10.13039/501100011033; FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/A-FQM-390-UGR20; Junta de Andalucia (Grant No. FQM-225); INFN under Project NUCSYS; and University of Turin under Project BARM-RILO-23-01.es_ES
dc.description.abstractWe introduce a method for consistently incorporating meson-exchange currents (MEC) within the superscaling analysis with relativistic effective mass, featuring a new scaling variable, (Formula presented.), and single-nucleon cross-sections derived from the relativistic mean field (RMF) model of nuclear matter. The single-nucleon prefactor is obtained from the 1p1h matrix element of the one-body current, combined with the two-body current, averaged over a momentum distribution of Fermi kind. The approach is applied to selected quasielastic cross-sectional data on (Formula presented.) C. The results reveal a departure from scaling behavior, yet, intriguingly, the data collapse into a discernible band that is parametrized using a simple function of (Formula presented.). This calculation, as developed, is not intended to provide pinpoint precision in extracting nuclear responses. Instead, it offers a global description of the quasielastic data with a considerable level of uncertainty. However, this approach effectively captures the overall trends of the quasielastic data beyond the Fermi gas model with a minimal number of parameters. The model incorporates partially transverse enhancement of the response, as embedded within the relativistic mean field framework. However, it does not account for enhancements attributed to the combined effects of tensor correlations and MEC, given that the initial RMF model lacks these correlations. A potential avenue for improvement involves starting with a correlated Fermi gas model to incorporate additional enhancements into single-nucleon responses. This study serves as a practical demonstration of implementing such corrections.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2020-114767GB-I00es_ES
dc.description.sponsorshipFEDERes_ES
dc.description.sponsorshipJunta de Andalucía A-FQM-390-UGR20es_ES
dc.description.sponsorshipJunta de Andalucía FQM-225es_ES
dc.description.sponsorshipINFN Project NUCSYSes_ES
dc.description.sponsorshipUniversity of Turin Project BARM-RILO-23-01es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSuperscalinges_ES
dc.subjectQuasielastic electron scatteringes_ES
dc.subjectMeson-exchange currentses_ES
dc.subjectRelativistic mean fieldes_ES
dc.titleMeson-exchange currents in quasielastic electron scattering in a generalized superscaling approaches_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/sym15091709
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional