Afficher la notice abrégée

dc.contributor.authorMedina-Romero, Jorge
dc.contributor.authorMora García, Antonio Miguel 
dc.contributor.authorValenzuela Valdes, Juan Francisco 
dc.contributor.authorCastillo Valdivieso, Pedro Ángel 
dc.date.accessioned2023-11-02T11:24:29Z
dc.date.available2023-11-02T11:24:29Z
dc.date.issued2023-06-29
dc.identifier.citationMedina-Romero, J.; Mora, A.M.; Valenzuela-Valdés, J.F.; Castillo, P.A. Applying Data Mining and Machine Learning Techniques to Predict Powerlifting Results. Eng. Proc. 2023, 39, 20. [https://doi.org/10.3390/engproc2023039020]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85414
dc.descriptionThis work was partially funded by projects PID2020-113462RB-I00 (ANIMALICOS), PID2020-115570GB-C22, and PID2020-115570GB-C21, granted by the Ministerio Español de Economía y Competitividad; project TED2021-129938B-I00, granted by the Ministerio Español de Ciencia e Innovación; projects P18-RT-4830 and A-TIC-608-UGR20, granted by Junta de Andalucía; and project B-TIC-402-UGR18 (FEDER and Junta de Andalucía).es_ES
dc.description.abstractThis paper presents a study on the creation of a tool to help powerlifting athletes and coaches, as well as bodybuilders and other amateur gym athletes, to analyse their data and obtain useful information regarding the athlete’s performance. The tool should also predict future personal records in lifting for both raw (non-equipped) and non-raw (equipped) attempts, and their various exercises. In order to achieve this, a dataset with entries of around 500 k lifters and more than 20 k official powerlifting competitions was used. Among those entries, biometric variables of the lifters and the weights they lift in each of the three movements of this sport discipline were included: squat, bench press, and deadlift. We applied data preprocessing and visualising as well as data splitting and scaling techniques in order to train the machine learning models that are used to make the predictions. Lastly, the best predictive models were used in the implemented tool.es_ES
dc.description.sponsorshipMinisterio Español de Economía y Competitividad ID2020-113462RB-I00, PID2020-115570GB-C22, PID2020-115570GB-C2es_ES
dc.description.sponsorshipMinisterio Español de Ciencia e Innovación TED2021-129938B-I00es_ES
dc.description.sponsorshipJunta de Andalucía P18-RT-4830, A-TIC-608-UGR20es_ES
dc.description.sponsorshipFEDER and Junta de Andalucía B-TIC-402-UGR18es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPowerliftinges_ES
dc.subjectForecastinges_ES
dc.subjectPredictiones_ES
dc.subjectDatasetes_ES
dc.subjectData mininges_ES
dc.subjectData visualisationes_ES
dc.subjectMachine learninges_ES
dc.titleApplying Data Mining and Machine Learning Techniques to Predict Powerlifting Resultses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/engproc2023039020
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional