Show simple item record

dc.contributor.authorCabrera, Amparo
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorCriado Ramón, David
dc.contributor.authorBarranco, C.D
dc.contributor.authorPegalajar Jiménez, María Del Carmen 
dc.date.accessioned2023-10-31T08:19:46Z
dc.date.available2023-10-31T08:19:46Z
dc.date.issued2023-09-27
dc.identifier.citationA. Cabrera, L. G. B. Ruiz, D. Criado-Ramón, C. D. Barranco, M. C. Pegalajar, "Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings", International Journal of Intelligent Systems, vol. 2023, Article ID 4391555, 12 pages, 2023. [https://doi.org/10.1155/2023/4391555]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85350
dc.description.abstractThis paper presents the implementation and analysis of two approaches (fuzzy and conventional). Using hourly data from buildings at the University of Granada, we have examined their electricity demand and designed a model to predict energy consumption. Our proposal was conducted with the aid of time series techniques as well as the combination of artificial neural networks and clustering algorithms. Both approaches proved to be suitable for energy modelling although nonfuzzy models provided more variability and less robustness than fuzzy ones. Despite the relatively small difference between fuzzy and nonfuzzy estimates, the results reported in this study show that the fuzzy solution may be useful to enhance and enrich energy predictions.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación” (Spain) (Grant PID2020-112495RB-C21es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033) and from the I+D+i FEDER 2020 project B-TIC-42-UGR20 “Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.”es_ES
dc.description.sponsorshipNext Generation EU” Margaritas Salas aids.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleApplication of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildingses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1155/2023/4391555
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional