Mostrar el registro sencillo del ítem
Extracting Temporal Relationships in EHR: Application to COVID-19 Patients
dc.contributor.author | Molina Fernández, Carlos | |
dc.contributor.author | Prados Suárez, María Belén | |
dc.date.accessioned | 2023-10-31T07:35:18Z | |
dc.date.available | 2023-10-31T07:35:18Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Molina, C., & Prados-Suarez, B. (2023). Extracting Temporal Relationships in EHR: Application to COVID-19 Patients. Studies in Health Technology and Informatics, 302, 546-550. [doi:10.3233/SHTI230202] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/85345 | |
dc.description.abstract | Association rules are one of the most used data mining techniques. The first proposals have considered relations over time in different ways, resulting in the so-called Temporal Association Rules (TAR). Although there are some proposals to extract association rules in OLAP systems, to the best of our knowledge, there is no method proposed to extract temporal association rules over multidimensional models in these kinds of systems. In this paper we study the adaptation of TAR to multidimensional structures, identifying the dimension that establishes the number of transactions and how to find time relative correlations between the other dimensions. A new method called COGtARE is presented as an extension of a previous approach proposed to reduce the complexity of the resulting set of association rules. The method is tested in application to COVID-19 patients data. | es_ES |
dc.description.sponsorship | B-TIC-744-UGR20 ADIM: Accesibilidad de Datos para Investigación Médica of the Junta de Andalucía | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IOS Press | es_ES |
dc.rights | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Temporal Association Rules (TAR) | es_ES |
dc.subject | Multidimensional Model | es_ES |
dc.subject | Complexity | es_ES |
dc.subject | COVID-19 | es_ES |
dc.title | Extracting Temporal Relationships in EHR: Application to COVID-19 Patients | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3233/SHTI230202 |