Show simple item record

dc.contributor.authorMartínez Ruiz, Laura 
dc.contributor.authorFlorido Ruiz, Javier 
dc.contributor.authorRodríguez Santana, César 
dc.contributor.authorLópez Rodríguez, Alba 
dc.contributor.authorGuerra Librero Rite, Ana 
dc.contributor.authorSánchez Porras, David 
dc.contributor.authorFernández Martínez, José 
dc.contributor.authorGonzález García, Pilar 
dc.contributor.authorRusanova Rusanova, Iryna 
dc.contributor.authorAcuña Castroviejo, Darío 
dc.contributor.authorCarriel Araya, Víctor 
dc.date.accessioned2023-10-30T10:52:02Z
dc.date.available2023-10-30T10:52:02Z
dc.date.issued2023-09-15
dc.identifier.citationL. Martinez-Ruiz et al. Intratumoral injection of melatonin enhances tumor regression in cell line-derived and patient-derived xenografts of head and neck cancer by increasing mitochondrial oxidative stress. Biomedicine & Pharmacotherapy 167 (2023) 115518[https://doi.org/10.1016/j.biopha.2023.115518]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85329
dc.description.abstractHead and neck squamous cell carcinoma present a high mortality rate. Melatonin has been shown to have oncostatic effects in different types of cancers. However, inconsistent results have been reported for in vivo applications. Consequently, an alternative administration route is needed to improve bioavailability and establish the optimal dosage of melatonin for cancer treatment. On the other hand, the use of patient-derived tumor models has transformed the field of drug research because they reflect the heterogeneity of patient tumor tissues. In the present study, we explore mechanisms for increasing melatonin bioavailability in tumors and investigate its potential as an adjuvant to improve the therapeutic efficacy of cisplatin in the setting of both xenotransplanted cell lines and primary human HNSCC. We analyzed the effect of two different formulations of melatonin administered subcutaneously or intratumorally in Cal-27 and SCC-9 xenografts and in patient-derived xenografts. Melatonin effects on tumor mitochondrial metabolism was also evaluated as well as melatonin actions on tumor cell migration. In contrast to the results obtained with the subcutaneous melatonin, intratumoral injection of melatonin drastically inhibited tumor progression in HNSCC-derived xenografts, as well as in patientderived xenografts. Interestingly, intratumoral injection of melatonin potentiated CDDP effects, decreasing Cal- 27 tumor growth. We demonstrated that melatonin increases ROS production and apoptosis in tumors, targeting mitochondria. Melatonin also reduces migration capacities and metastasis markers. These results illustrate the great clinical potential of intratumoral melatonin treatment and encourage a future clinical trial in cancer patients to establish a proper clinical melatonin treatment.es_ES
dc.description.sponsorshipEuropean Regional Development Fund (B‐CTS‐071-UGR18)es_ES
dc.description.sponsorshipConsejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (P18-RT‐32222)es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación/AEI: Agencia Estatal de Investigación/10.13039/501100011033es_ES
dc.description.sponsorshipUnión Europea “NextGenerationEU”/ PRTR (SAF2017-85903‐P; PID2020-115112RB‐I00)es_ES
dc.description.sponsorshipUniversity of Granada (Grant “UNETE,” UCE‐PP2017-05)es_ES
dc.description.sponsorshipMinisterio de Educación Cultura y Deporte, Spaines_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMelatonines_ES
dc.subjectIntratumoral injectiones_ES
dc.subjectPatient-derived xenograftes_ES
dc.subjectHead and neck canceres_ES
dc.subjectMitochondriaes_ES
dc.subjectReactive oxygen specieses_ES
dc.titleIntratumoral injection of melatonin enhances tumor regression in cell line-derived and patient-derived xenografts of head and neck cancer by increasing mitochondrial oxidative stresses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/NextGenerationEU/SAF2017-85903‐P; PID2020-115112RB‐I00es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.biopha.2023.115518
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional