Search for dark photons from Higgs boson decays via ZH production with a photon plus missing transverse momentum signature from pp collisions at p s = 13 TeV with the ATLAS detector
Metadata
Show full item recordMateria
Hadron-Hadron Scattering
Date
2023-06-17Referencia bibliográfica
The ATLAS collaboration., Aad, G., Abbott, B. et al. Search for dark photons from Higgs boson decays via ZH production with a photon plus missing transverse momentum signature from pp collisions at = 13 TeV with the ATLAS detector. J. High Energ. Phys. 2023, 133 (2023). [https://doi.org/10.1007/JHEP07(2023)133]
Sponsorship
ANPCyT; YerPhI, Armenia; Australian Research Council; BMWFW, Austria; Austrian Science Fund (FWF); Azerbaijan National Academy of Sciences (ANAS); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation; National Natural Science Foundation of China (NSFC); MEYS CR, Czech Republic; National Research Foundation of Korea; Danish Natural Science Research Council; Centre National de la Recherche Scientifique (CNRS); CEA-DRF/IRFU, France; Federal Ministry of Education & Research (BMBF); Max Planck Society; Hong Kong SAR, China; Israel Science Foundation; Istituto Nazionale di Fisica Nucleare (INFN); Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science; CNRST, Morocco; RCN, Norway; MEiN, Poland; Fundacao para a Ciencia e a Tecnologia (FCT); MNE/IFA, Romania; Ministry of Education, Science & Technological Development, Serbia; MSSR, Slovakia; Slovenian Research Agency - Slovenia; MIZS, Slovenia; Spanish Government; Wallenberg Foundation, Sweden; SERI, Switzerland; Ministry of Science and Technology, Taiwan; United States Department of Energy (DOE); National Science Foundation (NSF); BCKDF, Canada; CANARIE, Canada; Compute Canada, Canada; Czech Republic Government PRIMUS 21/SCI/017 UNCE SCI/013; COST, European Union; European Union (EU) European Research Council (ERC); European Union (EU) Marie Curie Actions; Horizon 2020, European Union; European Union (EU) Marie Curie Actions; Agence Nationale de la Recherche (ANR); German Research Foundation (DFG); Alexander von Humboldt Foundation; Herakleitos programme - EU-ESF, Greece; Thales Group; Aristeia programme - EU-ESF, Greece; Greek NSRF, Greece; BSF-NSF, Israel; MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN, Poland; Polish National Agency for Academic Exchange (NAWA); La Caixa Banking Foundation, Spain; CERCA Programme Generalitat de Catalunya, Spain; PROMETEO Programme Generalitat Valenciana, Spain; GenT Programme Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; Royal Society; Leverhulme Trust; UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC); TENMAK, Turkiye; Canton of Geneva, Switzerland; Canton of Bern, Switzerland; Swiss National Science Foundation (SNSF); SRC, Sweden; DSI/NRF, South Africa; Netherlands Organization for Scientific Research (NWO) Netherlands Government; Benoziyo Center, Israel; RGC, China; GSRI, Greece; HGF, Germany; SRNSFG, Georgia; Minciencias, Colombia; Ministry of Science and Technology, China; Chinese Academy of Sciences; ANID, Chile; CERN; NRC, CanadaAbstract
This paper describes a search for dark photons (γd) in proton-proton collisions at
= 13 TeV at the Large Hadron Collider (LHC). The dark photons are searched for in the decay of Higgs bosons (H → γγd) produced through the ZH production mode. The transverse mass of the system, made of the photon and the missing transverse momentum from the non-interacting γd, presents a distinctive signature as it peaks near the Higgs boson mass. The results presented use the total Run-2 integrated luminosity of 139 fb−1 recorded by the ATLAS detector at the LHC. The dominant reducible background processes are estimated using data-driven techniques. A Boosted Decision Tree technique is adopted to enhance the sensitivity of the search. As no excess is observed with respect to the Standard Model prediction, an observed (expected) upper limit on the branching ratio BR(H → γγd) of 2.28% (
) is set at 95% CL for massless γd. For massive dark photons up to 40 GeV, the observed (expected) upper limits on BR(H → γγd) at 95% confidence level is found within the [2.19,2.52]% ([2.71,3.11]%) range.