Afficher la notice abrégée

dc.contributor.authorLi, Yangxue
dc.contributor.authorHerrera Viedma, Enrique 
dc.contributor.authorPérez Gálvez, Ignacio Javier 
dc.contributor.authorXing, Wen
dc.contributor.authorMorente Molinera, Juan Antonio 
dc.date.accessioned2023-10-25T07:20:52Z
dc.date.available2023-10-25T07:20:52Z
dc.date.issued2023-11
dc.identifier.citationY. Li, E. Herrera-Viedma, I.J. Pérez et al. The arithmetic of triangular Z-numbers with reduced calculation complexity using an extension of triangular distribution. Information Sciences 647 (2023) 119477. [https://doi.org/10.1016/j.ins.2023.119477]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85225
dc.descriptionThis work was supported by project PID2019-103880RB-I00 funded by MCIN/AEI/10.13039/501100011033, by FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-TIC-590-UGR20, by the China Scholarship Council (CSC) , and by the Andalusian government through project P2000673. Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractInformation that people rely on is often uncertain and partially reliable. Zadeh introduced the concept of Z-numbers as a more adequate formal construct for describing uncertain and partially reliable information. Most existing applications of Z-numbers involve discrete ones due to the high complexity of calculating continuous ones. However, the continuous form is the most common form of information in the real world. Simplifying continuous Z-number calculations is significant for practical applications. There are two reasons for the complexity of continuous Z-number calculations: the use of normal distributions and the inconsistency between the meaning and definition of Z-numbers. In this paper, we extend the triangular distribution as the hidden probability density function of triangular Z-numbers. We add a new parameter to the triangular distribution to influence its convexity and concavity, and then expand the value's domain of the probability measure. Finally, we implement the basic operations of triangular Z-numbers based on the extended triangular distribution. The suggested method is illustrated with numerical examples, and we compare its computational complexity and the entropy (uncertainty) of the resulting Z-number to the traditional method. The comparison shows that our method has lower computational complexity, higher precision and lower uncertainty in the results.es_ES
dc.description.sponsorshipMCIN/AEI PID2019-103880RB-I00es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Proyecto B-TIC-590-UGR20es_ES
dc.description.sponsorshipChina Scholarship Counciles_ES
dc.description.sponsorshipAndalusian government P2000673es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectZ-numberses_ES
dc.subjectTriangular Z-numberses_ES
dc.subjectTriangular distributiones_ES
dc.subjectProbability measurees_ES
dc.titleThe arithmetic of triangular Z-numbers with reduced calculation complexity using an extension of triangular distributiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ins.2023.119477
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional