Afficher la notice abrégée

dc.contributor.authorRuiz Lendiınez, Juan J.
dc.contributor.authorReinoso Gordo, Juan Francisco 
dc.date.accessioned2023-10-16T09:18:21Z
dc.date.available2023-10-16T09:18:21Z
dc.date.issued2023-09-06
dc.identifier.citationJuan J. Ruiz-Lendínez, Francisco J. Ariza-López, Juan F. Reinoso-Gordo, Manuel A. Ureña-Cámara & Francisco J. Quesada-Real (2023) Deep learning methods applied to digital elevation models: state of the art, Geocarto International, 38:1, 2252389, [DOI: 10.1080/10106049.2023.2252389]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/85011
dc.description.abstractDeep Learning (DL) has a wide variety of applications in various thematic domains, including spatial information. Although with limitations, it is also starting to be considered in operations related to Digital Elevation Models (DEMs). This study aims to review the methods of DL applied in the field of altimetric spatial information in general, and DEMs in particular. Void Filling (VF), Super-Resolution (SR), landform classification and hydrography extraction are just some of the operations where traditional methods are being replaced by DL methods. Our review concludes that although these methods have great potential, there are aspects that need to be improved. More appropriate terrain information or algorithm parameterisation are some of the challenges that this methodology still needs to face.es_ES
dc.description.sponsorshipFunctional Quality of Digital Elevation Models in Engineering’ of the State Agency Research of Spaines_ES
dc.description.sponsorshipPID2019-106195RB- I00/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherTaylor&Francises_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDeep learninges_ES
dc.subjectDEMses_ES
dc.subjectVoid fillinges_ES
dc.subjectSuper-resolutiones_ES
dc.subjectLandform classificationes_ES
dc.titleDeep learning methods applied to digital elevation models: state of the artes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1080/10106049.2023.2252389
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional