Mostrar el registro sencillo del ítem

dc.contributor.authorBlanco Elices, Cristina
dc.contributor.authorSánchez Porras, David 
dc.contributor.authorChato Astrain, Jesús 
dc.contributor.authorCampos Sánchez, Fernando 
dc.contributor.authorAlaminos Mingorance, Miguel 
dc.contributor.authorGarzón Bello, Ingrid Johanna 
dc.contributor.authorCampos Muñoz, Antonio Jesús 
dc.date.accessioned2023-10-06T10:46:55Z
dc.date.available2023-10-06T10:46:55Z
dc.date.issued2023-08-10
dc.identifier.citationBlanco-Elices C, Oruezabal RI, Sánchez-Porras D, Chato-Astrain J, Campos F, Alaminos M, Garzón I and Campos A (2023). A novel 3D biofabrication strategy to improve cell proliferation and differentiation of human Wharton’s jelly mesenchymal stromal cells for cell therapy and tissue engineering. Front. Bioeng. Biotechnol. 11:1235161. [doi: 10.3389/fbioe.2023.1235161]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84884
dc.descriptionSupported by grant PSETC-19-001 (Fibrigar3D) by Plan Propio de Investigación y Transferencia 2019, Universidad de Granada, Spain. Supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation, Plan Estatal de Investigación Científica y Técnica y de Innovación (I+D+i), grants FIS PI18/0331, FIS PI21/0980, FIS PI22/0059, and FIS PI20/0317 and co-funded by FEDER funds, European Union, Una manera de hacer Europa. Supported by grant PE-0395-2019 from Consejería de Salud y Familias, Junta de Andalucía, Spain and grant B-CTS-450-UGR20 (Programa Operativo FEDER Andalucía 2014–2020, University of Granada and Consejería de Transformación Económica, Industria, Conocimiento y Universidades). Cofinanced by the European Regional Development Fund (ERDF) through the “Una manera de hacer Europa” program.es_ES
dc.descriptionThe Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fbioe.2023.1235161/full#supplementary-materiales_ES
dc.description.abstractPurpose: Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. Methods: In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D). Human Wharton’s jelly mesenchymal stromal cells (HWJSC) were cultured in 3D using 100%, 75%, 50%, and 25% concentrations of fibrin-agarose biomaterials (FA100, FA75, FA50 and FA25 group) and compared with control cells cultured using classical 2D systems (CTR-2D). Results: Our results showed a significant increase in the number of cells generated after 7 days of culture, with cells displaying numerous expansions towards the biomaterial, and a significant overexpression of the cell proliferation marker KI67 was found for the FA75 and FA100 groups. TUNEL and qRT-PCR analyses demonstrated that the use of FIBRIAGAR-3D was not associated with an induction of apoptosis by cultured cells. Instead, the 3D system retained the expression of typical phenotypic markers of HWJSC, including CD73, CD90, CD105, NANOG and OCT4, and biosynthesis markers such as types-I and IV collagens, with significant increase of some of these markers, especially in the FA100 group. Finally, our analysis of 8 cell signaling molecules revealed a significant decrease of GM-CSF, IFN-g, IL2, IL4, IL6, IL8, and TNFα, suggesting that the 3D culture system did not induce the expression of pro-inflammatory molecules. Conclusion: These results confirm the usefulness of FIBRIAGAR-3D culture systems to increase cell proliferation without altering cell phenotype of immunogenicity and opens the door to the possibility of using this novel biofabrication method in cell therapy and tissue engineering of the human cornea, oral mucosa, skin, urethra, among other structures.es_ES
dc.description.sponsorshipUniversidad de Granada, Spaines_ES
dc.description.sponsorshipConsejería de Transformación Económica, Industria, Conocimiento y Universidadeses_ES
dc.description.sponsorshipFEDER PE-0395-2019es_ES
dc.description.sponsorshipSecretaría de Estado de Investigación, Desarrollo e Innovación FIS PI18/0331, FIS PI20/0317, FIS PI21/0980, FIS PI22/0059 I+D+ies_ES
dc.description.sponsorshipInstituto de Salud Carlos III ISCIIIes_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación MICINNes_ES
dc.description.sponsorshipEuropean Regional Development Fund ERDFes_ES
dc.description.sponsorshipConsejería de Salud y Familias, Junta de Andalucía B-CTS-450-UGR20es_ES
dc.description.sponsorshipSpanish National Plan for Scientific and Technical Research and Innovationes_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCell culturees_ES
dc.subjectThree-dimensionales_ES
dc.subjectBiofabricationes_ES
dc.subjectHuman Wharton’s jelly mesenchymal stromal cellses_ES
dc.subjectCell therapyes_ES
dc.subjectTissue engineeringes_ES
dc.titleA novel 3D biofabrication strategy to improve cell proliferation and differentiation of human Wharton’s jelly mesenchymal stromal cells for cell therapy and tissue engineeringes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fbioe.2023.1235161
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional