Afficher la notice abrégée

dc.contributor.authorCappelletti, Luca
dc.contributor.authorCano Gutiérrez, Carlos 
dc.date.accessioned2023-10-06T10:43:31Z
dc.date.available2023-10-06T10:43:31Z
dc.date.issued2023-06-26
dc.identifier.citationCappelletti, L., Fontana, T., Casiraghi, E. et al. GRAPE for fast and scalable graph processing and random-walk-based embedding. Nat Comput Sci 3, 552–568 (2023). [https://doi.org/10.1038/s43588-023-00465-8]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84883
dc.description.abstractGraph representation learning methods opened new avenues for addressing complex, real-world problems represented by graphs. However, many graphs used in these applications comprise millions of nodes and billions of edges and are beyond the capabilities of current methods and software implementations. We present GRAPE (Graph Representation Learning, Prediction and Evaluation), a software resource for graph processing and embedding that is able to scale with big graphs by using specialized and smart data structures, algorithms, and a fast parallel implementation of random-walk-based methods. Compared with state-of-the-art software resources, GRAPE shows an improvement of orders of magnitude in empirical space and time complexity, as well as competitive edge- and node-label prediction performance. GRAPE comprises approximately 1.7 million well-documented lines of Python and Rust code and provides 69 node-embedding methods, 25 inference models, a collection of efficient graph-processing utilities, and over 80,000 graphs from the literature and other sources. Standardized interfaces allow a seamless integration of third-party libraries, while ready-to-use and modular pipelines permit an easy-to-use evaluation of graph-representation-learning methods, therefore also positioning GRAPE as a software resource that performs a fair comparison between methods and libraries for graph processing and embedding.es_ES
dc.description.sponsorshipNational Center for Gene Therapy and Drugs based on RNA Technology, PNRR-NextGenerationEU program G43C22001320007es_ES
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) U01-CA239108-02es_ES
dc.description.sponsorshipTransition Grant Line 1A Project NIMI PARTENARIATI H2020' 1R24OD011883-01es_ES
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA U01-CA239108-02 DE-AC02-05CH11231es_ES
dc.description.sponsorshipUnited States Department of Energy (DOE)es_ES
dc.description.sponsorshipEuropean Union (EU) Marie Curie Actions PSR2015-1720GVALE_01 PID2021-128970OA-I00es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMathematics and computinges_ES
dc.subjectPhysical scienceses_ES
dc.subjectSoftwarees_ES
dc.titleGRAPE for fast and scalable graph processing and random-walk-based embeddinges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/G43C22001320007es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/EU/PSR2015-1720GVALE_01 PID2021-128970OA-I00es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s43588-023-00465-8


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional