Mostrar el registro sencillo del ítem

dc.contributor.authorAvilés Redondo, Antonio Daniel 
dc.contributor.authorMartínez Cervantes, Gonzalo
dc.contributor.authorRueda Zoca, Abraham
dc.date.accessioned2023-10-03T08:58:06Z
dc.date.available2023-10-03T08:58:06Z
dc.date.issued2023
dc.identifier.citationAntonio Avilés. Gonzalo Martínez-Cervantes. Abraham Rueda Zoca. A renorming Characterisation of Banach Spaces containing ℓ 1 ( κ ) ." Publ. Mat. 67 (2) 601 - 609, 2023. https://doi.org/10.5565/PUBLMAT6722305es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84800
dc.description.abstractA result of G. Godefroy asserts that a Banach space X contains an isomorphic copy of ℓ 1 if and only if there is an equivalent norm | | | ⋅ | | | such that, for every finite-dimensional subspace Y of X and every ε > 0 , there exists x ∈ S X so that | | | y + r x | | | ≥ ( 1 − ε ) ( | | | y | | | + | r | ) for every y ∈ Y and every r ∈ R . In this paper we generalise this result to larger cardinals, showing that if κ is an uncountable cardinal, then a Banach space X contains a copy of ℓ 1 ( κ ) if and only if there is an equivalent norm | | | ⋅ | | | on X such that for every subspace Y of X with dens ( Y ) < κ there exists a norm-one vector x so that | | | y + r x | | | = | | | y | | | + | r | whenever y ∈ Y and r ∈ R . This result answers a question posed by S. Ciaci, J. Langemets, and A. Lissitsin, where the authors wonder whether the above statement holds for infinite successor cardinals. We also show that, in the countable case, the result of Godefroy cannot be improved to take ε = 0 .es_ES
dc.language.isoenges_ES
dc.publisherUniversitat Autònoma de Barcelonaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBall-coveringes_ES
dc.subjectℓ1(κ)es_ES
dc.subjectOctahedral normes_ES
dc.subjectRenorminges_ES
dc.titleA renorming Characterisation of Banach Spaces containing ℓ 1 ( κ )es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.5565/PUBLMAT6722305
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional