Mostrar el registro sencillo del ítem
Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data
dc.contributor.author | Castillo Barnes, Diego | |
dc.contributor.author | Martínez Murcia, Francisco Jesús | |
dc.contributor.author | Jiménez Mesa, Carmen | |
dc.contributor.author | Salas González, Diego | |
dc.contributor.author | Ramírez Pérez De Inestrosa, Javier | |
dc.contributor.author | Gorriz Sáez, Juan Manuel | |
dc.date.accessioned | 2023-09-28T07:14:49Z | |
dc.date.available | 2023-09-28T07:14:49Z | |
dc.date.issued | 2023-07-21 | |
dc.identifier.citation | D. Castillo-Barnes et al. Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data. International Journal of Neural Systems, Vol. 33, No. 8 (2023) 2350041. [DOI: 10.1142/S0129065723500417] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/84703 | |
dc.description | This work was supported by the FEDER/Junta deAndalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto (B-TIC-586-UGR20); the MCIN/AEI/10.13039/501100011033/ and FEDER \Una manerade hacer Europa" under the RTI2018-098913-B100 project, by the Consejeria de Economia, Innovacion,Ciencia y Empleo (Junta de Andalucia) and FEDER under CV20-45250, A-TIC-080-UGR18 and P20-00525 projects. Grant by F.J.M.M. RYC2021-030875-I funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. Work by D.C.B. is supported by the MCIN/AEI/FJC2021-048082-I Juan de la Cierva Formacion'. Work by J.E.A. is supported by Next Generation EU Fund through a Margarita Salas Grant, and work by C.J.M. is supported by Ministerio de Universidades under the FPU18/04902 grant. | es_ES |
dc.description.abstract | Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its triggers are still not clear, they may be due to a combination of different types of biomarkers measured through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning methodology trained to identify and penalize input sources with low classification rates and/or high-variability. This proposal improves results published in recent years and provides an accurate solution not only from the point of view of image preprocessing (including a comparison between different intensity preservation techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also introduced a bagging classification schema for scenarios with unbalanced data.As shown by our results, the CAD proposal is able to detect PD with 96.48% of balanced accuracy, and opens up the possibility of combining any number of input data sources relevant for PD. | es_ES |
dc.description.sponsorship | FEDER/Junta deAndalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-TIC-586-UGR20 | es_ES |
dc.description.sponsorship | MCIN/AEI P20-00525 | es_ES |
dc.description.sponsorship | FEDER \Una manerade hacer Europa RYC2021-030875-I | es_ES |
dc.description.sponsorship | Junta de Andalucia | es_ES |
dc.description.sponsorship | European Union (EU) Spanish Government RTI2018-098913-B100, CV20-45250, A-TIC-080-UGR18 | es_ES |
dc.description.sponsorship | European Union (EU) | es_ES |
dc.description.sponsorship | Juan de la Cierva Formacion | es_ES |
dc.description.sponsorship | Next Generation EU Fund through a Margarita Salas Grant | es_ES |
dc.description.sponsorship | Ministerio de Universidades FPU18/04902 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | World Scientific | es_ES |
dc.rights | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Ensemble learning | es_ES |
dc.subject | Neuroimaging | es_ES |
dc.subject | Parkinson's disease | es_ES |
dc.subject | MRI | es_ES |
dc.subject | SPECT | es_ES |
dc.subject | Computer-aided-diagnosis | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Image processing | es_ES |
dc.title | Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1142/S0129065723500417 | |
dc.type.hasVersion | VoR | es_ES |