Mostrar el registro sencillo del ítem

dc.contributor.authorCastillo Barnes, Diego 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorJiménez Mesa, Carmen 
dc.contributor.authorSalas González, Diego 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2023-09-28T07:14:49Z
dc.date.available2023-09-28T07:14:49Z
dc.date.issued2023-07-21
dc.identifier.citationD. Castillo-Barnes et al. Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data. International Journal of Neural Systems, Vol. 33, No. 8 (2023) 2350041. [DOI: 10.1142/S0129065723500417]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84703
dc.descriptionThis work was supported by the FEDER/Junta deAndalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto (B-TIC-586-UGR20); the MCIN/AEI/10.13039/501100011033/ and FEDER \Una manerade hacer Europa" under the RTI2018-098913-B100 project, by the Consejeria de Economia, Innovacion,Ciencia y Empleo (Junta de Andalucia) and FEDER under CV20-45250, A-TIC-080-UGR18 and P20-00525 projects. Grant by F.J.M.M. RYC2021-030875-I funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. Work by D.C.B. is supported by the MCIN/AEI/FJC2021-048082-I Juan de la Cierva Formacion'. Work by J.E.A. is supported by Next Generation EU Fund through a Margarita Salas Grant, and work by C.J.M. is supported by Ministerio de Universidades under the FPU18/04902 grant.es_ES
dc.description.abstractParkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its triggers are still not clear, they may be due to a combination of different types of biomarkers measured through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning methodology trained to identify and penalize input sources with low classification rates and/or high-variability. This proposal improves results published in recent years and provides an accurate solution not only from the point of view of image preprocessing (including a comparison between different intensity preservation techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also introduced a bagging classification schema for scenarios with unbalanced data.As shown by our results, the CAD proposal is able to detect PD with 96.48% of balanced accuracy, and opens up the possibility of combining any number of input data sources relevant for PD.es_ES
dc.description.sponsorshipFEDER/Junta deAndalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-TIC-586-UGR20es_ES
dc.description.sponsorshipMCIN/AEI P20-00525es_ES
dc.description.sponsorshipFEDER \Una manerade hacer Europa RYC2021-030875-Ies_ES
dc.description.sponsorshipJunta de Andaluciaes_ES
dc.description.sponsorshipEuropean Union (EU) Spanish Government RTI2018-098913-B100, CV20-45250, A-TIC-080-UGR18es_ES
dc.description.sponsorshipEuropean Union (EU)es_ES
dc.description.sponsorshipJuan de la Cierva Formaciones_ES
dc.description.sponsorshipNext Generation EU Fund through a Margarita Salas Grantes_ES
dc.description.sponsorshipMinisterio de Universidades FPU18/04902es_ES
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectEnsemble learninges_ES
dc.subjectNeuroimaginges_ES
dc.subjectParkinson's diseasees_ES
dc.subjectMRIes_ES
dc.subjectSPECTes_ES
dc.subjectComputer-aided-diagnosises_ES
dc.subjectMachine learninges_ES
dc.subjectImage processing es_ES
dc.titleNonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1142/S0129065723500417
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional