Afficher la notice abrégée

dc.contributor.authorRuiz Fresneda, Miguel Ángel 
dc.contributor.authorGijón Gijón, Alfonso
dc.contributor.authorMorales Álvarez, Pablo 
dc.date.accessioned2023-09-27T07:55:14Z
dc.date.available2023-09-27T07:55:14Z
dc.date.issued2023-08-11
dc.identifier.citationRuiz-Fresneda, M.A., Gijón, A. & Morales-Álvarez, P. Bibliometric analysis of the global scientific production on machine learning applied to different cancer types. Environ Sci Pollut Res 30, 96125–96137 (2023). [https://doi.org/10.1007/s11356-023-28576-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84681
dc.descriptionThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement no. 860627 (CLARIFY Project), from the Spanish Ministry of Science and Innovation under project PID2019-105142RB-C22, and by FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under the project P20_00286. Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractCancer disease is one of the main causes of death in the world, with million annual cases in the last decades. The need to find a cure has stimulated the search for efficient treatments and diagnostic procedures. One of the most promising tools that has emerged against cancer in recent years is machine learning (ML), which has raised a huge number of scientific papers published in a relatively short period of time. The present study analyzes global scientific production on ML applied to the most relevant cancer types through various bibliometric indicators. We find that over 30,000 studies have been published so far and observe that cancers with the highest number of published studies using ML (breast, lung, and colon cancer) are those with the highest incidence, being the USA and China the main scientific producers on the subject. Interestingly, the role of China and Japan in stomach cancer is correlated with the number of cases of this cancer type in Asia (78% of the worldwide cases). Knowing the countries and institutions that most study each area can be of great help for improving international collaborations between research groups and countries. Our analysis shows that medical and computer science journals lead the number of publications on the subject and could be useful for researchers in the field. Finally, keyword co-occurrence analysis suggests that ML-cancer research trends are focused not only on the use of ML as an effective diagnostic method, but also for the improvement of radiotherapy- and chemotherapy-based treatments.es_ES
dc.description.sponsorshipHorizon 2020 European Union under the Marie Sklodowska Curie 860627es_ES
dc.description.sponsorshipSpanish Government PID2019-105142RB-C22es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades P20_00286es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMachine learninges_ES
dc.subjectCancer es_ES
dc.subjectBibliometric analysises_ES
dc.subjectArtificial intelligence es_ES
dc.subjectPublic health es_ES
dc.titleBibliometric analysis of the global scientific production on machine learning applied to different cancer typeses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860627es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s11356-023-28576-9
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional