Mostrar el registro sencillo del ítem

dc.contributor.authorMauro, Gianfranco
dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorMorales Santos, Diego Pedro 
dc.date.accessioned2023-09-25T12:06:00Z
dc.date.available2023-09-25T12:06:00Z
dc.date.issued2023-08-08
dc.identifier.citationMauro, G., Martinez-Rodriguez, I., Ott, J. et al. Context-adaptable radar-based people counting via few-shot learning. Appl Intell (2023). [https://doi.org/10.1007/s10489-023-04778-z]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84647
dc.descriptionThis work has received funding from the ECSEL Joint Under-taking (JU) under grant agreement No. 876925 (ANDANTE). The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Belgium, Germany, Netherlands, Portugal, Spain, Switzerland. Funding for open access publishing: Universidad de Granada/CBUA.es_ES
dc.description.abstractIn many industrial or healthcare contexts, keeping track of the number of people is essential. Radar systems, with their low overall cost and power consumption, enable privacy-friendly monitoring in many use cases. Yet, radar data are hard to interpret and incompatible with most computer vision strategies. Many current deep learning-based systems achieve high monitoring performance but are strongly context-dependent. In this work, we show how context generalization approaches can let the monitoring system fit unseen radar scenarios without adaptation steps. We collect data via a 60 GHz frequency-modulated continuous wave in three office rooms with up to three people and preprocess them in the frequency domain. Then, using meta learning, specifically the Weighting-Injection Net, we generate relationship scores between the few training datasets and query data. We further present an optimization-based approach coupled with weighting networks that can increase the training stability when only very few training examples are available. Finally, we use pool-based sampling active learning to fine-tune the model in new scenarios, labeling only the most uncertain data. Without adaptation needs, we achieve over 80% and 70% accuracy by testing the meta learning algorithms in new radar positions and a new office, respectively.es_ES
dc.description.sponsorshipECSEL Joint Under-taking (JU) 876925es_ES
dc.description.sponsorshipHorizon 2020es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectActive learninges_ES
dc.subjectMeta learninges_ES
dc.subjectRadar es_ES
dc.subjectFew shot learninges_ES
dc.subjectPeople countinges_ES
dc.subjectWeighting networkes_ES
dc.titleContext-adaptable radar-based people counting via few-shot learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10489-023-04778-z
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional