Afficher la notice abrégée

dc.contributor.authorGao, Caroline X.
dc.date.accessioned2023-09-21T08:24:52Z
dc.date.available2023-09-21T08:24:52Z
dc.date.issued2023-05-27
dc.identifier.citationC.X. Gao et al. An overview of clustering methods with guidelines for application in mental health research. Psychiatry Research 327 (2023) 115265 2[https://doi.org/10.1016/j.psychres.2023.115265]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84538
dc.description.abstractCluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and librarieses_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectClusteringes_ES
dc.subjectCluster analysis es_ES
dc.subjectMachine learninges_ES
dc.subjectUnsupervised learninges_ES
dc.subjectMental health researches_ES
dc.titleAn overview of clustering methods with guidelines for application in mental health researches_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.psychres.2023.115265
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional