• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing: from synaptic plasticity to stochastic resonance

[PDF] fnins-17-1271956.pdf (3.766Mb)
Identificadores
URI: https://hdl.handle.net/10481/84515
DOI: 10.3389/fnins.2023.1271956
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Maldonado Correa, David; Cantudo Gómez, Antonio; Romero Zaliz, Rocio Celeste; Jiménez Molinos, Francisco; Roldán Aranda, Juan Bautista
Editorial
Frontiers
Materia
Resistive switching devices
 
Neuromorphic computing
 
Synaptic behavior
 
Spike-timing-dependent plasticity
 
Stochastic resonance
 
Date
2023
Referencia bibliográfica
Maldonado D, Cantudo A, Perez E, Romero-Zaliz R, Perez-Bosch Quesada E, Mahadevaiah MK, Jimenez-Molinos F, Wenger C and Roldan JB (2023) TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing: from synaptic plasticity to stochastic resonance. Front. Neurosci. 17:1271956. [doi: 10.3389/fnins.2023.1271956]
Sponsorship
Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain), and the FEDER program through project B-TIC-624-UGR20; Federal Ministry of Education and Research of Germany under Grant 16ME0092
Abstract
We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it. The spike timing dependent plasticity model was implemented as the learning rule of a spiking neural network that was trained to recognize the MNIST dataset. Variability is implemented and its influence on the network recognition accuracy is considered accounting for the number of neurons in the network and the number of training epochs. Finally, stochastic resonance is studied as another synaptic feature. It is shown that this effect is important and greatly depends on the noise statistical characteristics.
Collections
  • DETC - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback