Mostrar el registro sencillo del ítem

dc.contributor.authorMorales, Javier
dc.contributor.authorPoyato Sánchez, Jesús David
dc.date.accessioned2023-09-11T10:04:32Z
dc.date.available2023-09-11T10:04:32Z
dc.date.issued2022-08-05
dc.identifier.citationJavier Morales, David Poyato. On the trend to global equilibrium for Kuramoto oscillators. Ann. Inst. H. Poincaré Anal. Non Linéaire 40 (2023), no. 3, pp. 631–716. [DOI 10.4171/AIHPC/47]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84354
dc.descriptionThe work of J. Morales was supported by the NSF grants DMS16-13911, RNMS11-07444 (KI-Net) and ONR grant N00014-1812465. The work of D. Poyato was partially supported by the MECD (Spain) research grant FPU14/06304, the MINECO-Feder (Spain) research grant number RTI2018-098850-B-I00, the Junta de Andalucia (Spain) projects PY18-RT-2422 and A-FQM-311-UGR18, and the European Research Council (ERC) grant agreement no. 639638.es_ES
dc.description.abstractIn this paper we study convergence to the stable equilibrium for Kuramoto oscillators. Specifically, we derive estimates on the rate of convergence to the global equilibrium for solutions of the Kuramoto–Sakaguchi equation departing from generic initial data in a large coupling strength regime. As a by-product, using the stability of the equation in the Wasserstein distance, we quantify the rate at which discrete Kuramoto oscillators concentrate around the global equilibrium. In doing this, we achieve a quantitative estimate in which the probability that oscillators concentrate at the given rate tends to 1 as the number of oscillators increases. Among the essential steps in our proof are (1) an entropy production estimate inspired by the formal Riemannian structure of the space of probability measures, first introduced by Otto (2001); (2) a new quantitative estimate on the instability of equilibria with antipodal oscillators based on the dynamics of norms of the solution in sets evolving by the continuity equation; (3) the use of generalized local logarithmic Sobolev- and Talagrand-type inequalities, similar to those derived by Otto and Villani (2000); (4) the study of a system of coupled differential inequalities by a treatment inspired by Desvillettes and Villani (2005). Since the Kuramoto–Sakaguchi equation is not a gradient flow with respect to the Wasserstein distance, we derive such inequalities under a suitable fibered transportation distance.es_ES
dc.description.sponsorshipMINECO-Feder RTI2018-098850-B-I00es_ES
dc.description.sponsorshipNational Science Foundation DMS16-13911, RNMS11-07444 NSFes_ES
dc.description.sponsorshipOffice of Naval Research N00014-1812465 ONRes_ES
dc.description.sponsorshipEuropean Research Council 639638 ERCes_ES
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte FPU14/06304 MECDes_ES
dc.description.sponsorshipJunta de Andalucía A-FQM-311-UGR18, PY18-RT-2422es_ES
dc.language.isoenges_ES
dc.publisherEuropean Mathematical Society Publishing Housees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKuramoto modeles_ES
dc.subjectSynchronizationes_ES
dc.subjectWasserstein distancees_ES
dc.subjectOrder parameterses_ES
dc.subjectGradient flowes_ES
dc.subjectEntropy productiones_ES
dc.subjectLogarithmic Sobolev inequalityes_ES
dc.subjectTalagrand inequalityes_ES
dc.titleOn the trend to global equilibrium for Kuramoto oscillatorses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.4171/AIHPC/47
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional