Mostrar el registro sencillo del ítem
Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks
| dc.contributor.author | Caballero Águila, Raquel | |
| dc.contributor.author | García-Ligero Ramírez, María Jesús | |
| dc.contributor.author | Hermoso Carazo, Aurora | |
| dc.contributor.author | Linares Pérez, Josefa | |
| dc.date.accessioned | 2023-09-06T08:57:27Z | |
| dc.date.available | 2023-09-06T08:57:27Z | |
| dc.date.issued | 2023-07-05 | |
| dc.identifier.citation | Raquel Caballero-Águila, María J. García-Ligero, Aurora Hermoso-Carazo, Josefa Linares-Pérez. Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14550-14577. [doi: 10.3934/mbe.2023651] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/84288 | |
| dc.description.abstract | This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and e ectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy. | es_ES |
| dc.description.sponsorship | Agencia Estatal de Investigación | es_ES |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación | es_ES |
| dc.description.sponsorship | European Regional Development Fund PID2021-124486NB-I00 | es_ES |
| dc.description.sponsorship | Agencia Estatal de Investigación | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | American Institute of Mathematical Sciences | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Networked systems | es_ES |
| dc.subject | Random parameter matrices | es_ES |
| dc.subject | Time-correlated additive noise | es_ES |
| dc.subject | Random deception attacks | es_ES |
| dc.subject | Distributed estimation | es_ES |
| dc.title | Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.3934/mbe.2023651 | |
| dc.type.hasVersion | VoR | es_ES |
