Mostrar el registro sencillo del ítem

dc.contributor.authorVélez Pereira, Andrés M.
dc.contributor.authorDe Linares Fernández, Concepción 
dc.contributor.authorCanela, Miquel A.
dc.contributor.authorBelmonte, Jordina
dc.date.accessioned2023-07-26T08:06:20Z
dc.date.available2023-07-26T08:06:20Z
dc.date.issued2023-06-13
dc.identifier.citationVélez-Pereira, A.M.; De Linares, C.; Canela, M.A.; Belmonte, J. A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores. Atmosphere 2023, 14, 1016. [https://doi.org/10.3390/ atmos14061016]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84003
dc.description.abstractAerobiological predictive model development is of increasing interest, despite the distribution and variability of data and the limitations of statistical methods making it highly challenging. The use of concentration thresholds and models, where a binary response allows one to establish the occurrence or non-occurrence of the threshold, have been proposed to reduce difficulties. In this paper, we use logistic regression (logit) and regression trees to predict the daily concentration thresholds (low, medium, high, and very high) of six airborne fungal spore taxa (Alternaria, Cladosporium, Agaricus, Ganoderma, Leptosphaeria, and Pleospora) in eight localities in Catalonia (NE Spain) using data from 1995 to 2014. The predictive potential of these models was analyzed through sensitivity and specificity. The models showed similar results regarding the relationship and influence of the meteorological parameters and fungal spores. Ascospores showed a strong relationship with precipitation and basidiospores with minimum temperature, while conidiospores did not indicate any preferences. Sensitivity (true-positive) and specificity (false-positive) presented highly satisfactory validation results for both models in all thresholds, with an average of 73%. However, seeing as logit offers greater precision when attempting to establish the exceedance of a concentration threshold and is easier to apply, it is proposed as the best predictive modeles_ES
dc.description.sponsorshipSpanish Ministry of Science and Technology through the project “CGL2012-39523-C02-01/CLI”es_ES
dc.description.sponsorshipAdministrative Department of Science, Technology and Innovation-COLCIENCIAS (Colombia)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAerobiologyes_ES
dc.subjectLogistic regressiones_ES
dc.subjectMycology es_ES
dc.subjectPredictiones_ES
dc.subjectRegression treees_ES
dc.titleA Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Sporeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/atmos14061016
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional