Mostrar el registro sencillo del ítem

dc.contributor.authorRosales Lombardo, Manuel César 
dc.date.accessioned2023-07-25T11:06:02Z
dc.date.available2023-07-25T11:06:02Z
dc.date.issued2023-04-09
dc.identifier.citationC. Rosales. Stable capillary hypersurfaces and the partitioning problem in balls with radial weights. Nonlinear Analysis 233 (2023) 113291[https://doi.org/10.1016/j.na.2023.113291]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83978
dc.description.abstractIn a round ball B ⊂ Rn+1 endowed with an O(n+1)-invariant metric we consider a radial function that weights volume and area. We prove that a compact two-sided hypersurface in B which is stable capillary in weighted sense and symmetric about some line containing the center of B is homeomorphic to a closed n-dimensional disk. When combined with Hsiang symmetrization and other stability results this allows to deduce that the interior boundary of any isoperimetric region in B for the Gaussian weight is a closed n-disk of revolution. For n = 2 we also show that a compact weighted stable capillary surface in B of genus 0 is a closed disk of revolution.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWeighted manifoldses_ES
dc.subjectRadial weightses_ES
dc.subjectCapillary hypersurfaceses_ES
dc.subjectPartitioning problemes_ES
dc.subjectStabilityes_ES
dc.titleStable capillary hypersurfaces and the partitioning problem in balls with radial weightses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.na.2023.113291


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional