Mostrar el registro sencillo del ítem

dc.contributor.authorde Manuel, Alicia
dc.contributor.authorDelgado Rodríguez, Janet 
dc.contributor.authorCruz, Maite
dc.contributor.authorRodríguez Arias Vailhen, David 
dc.date.accessioned2023-07-25T10:10:46Z
dc.date.available2023-07-25T10:10:46Z
dc.date.issued2023-06-12
dc.identifier.citationManuel, A., Delgado, J., Parra Jounou, I., Ausín, T., Casacuberta, D., Cruz, M., Guersenzvaig, A., Moyano, C., Rodríguez-Arias, D., Rueda, J., & Puyol, A. (2023). Ethical assessments and mitigation strategies for biases in AI-systems used during the COVID-19 pandemic. Big Data & Society, 10(1). [https://doi.org/10.1177/20539517231179199]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83973
dc.descriptionThis research has been funded thanks to the “Ayudas Fundación BBVA a Equipos de Investigación Científica SARS-CoV-2 y COVID-19” in Humanities.es_ES
dc.description.abstractThe main aim of this article is to reflect on the impact of biases related to artificial intelligence (AI) systems developed to tackle issues arising from the COVID-19 pandemic, with special focus on those developed for triage and risk prediction. A secondary aim is to review assessment tools that have been developed to prevent biases in AI systems. In addition, we provide a conceptual clarification for some terms related to biases in this particular context. We focus mainly on non-racial biases that may be less considered when addressing biases in AI systems in the existing literature. In the manuscript, we found that the existence of bias in AI systems used for COVID-19 can result in algorithmic justice and that the legal frameworks and strategies developed to prevent the apparition of bias have failed to adequately consider social determinants of health. Finally, we make some recommendations on how to include more diverse professional profiles in order to develop AI systems that increase the epistemic diversity needed to tackle AI biases during the COVID-19 pandemic and beyond.es_ES
dc.description.sponsorshipFundación BBVA SARS-CoV-2, COVID-19es_ES
dc.language.isoenges_ES
dc.publisherSAGEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAI systemses_ES
dc.subjectBiases_ES
dc.subjectTriage and risk predictiones_ES
dc.subjectSocial determinants of healthes_ES
dc.subjectCOVID-19es_ES
dc.titleEthical assessments and mitigation strategies for biases in AI-systems used during the COVID-19 pandemices_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1177/20539517231179199
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional