Mostrar el registro sencillo del ítem

dc.contributor.authorNava, Lorenzo
dc.contributor.authorReyes Carmona, Cristina 
dc.contributor.authorGalve Arnedo, Jorge Pedro 
dc.date.accessioned2023-07-25T05:56:30Z
dc.date.available2023-07-25T05:56:30Z
dc.date.issued2023-06-30
dc.identifier.citationNava, L., Carraro, E., Reyes-Carmona, C. et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides (2023). [https://doi.org/10.1007/s10346-023-02104-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83957
dc.description.abstractAccurate early warning systems for landslides are a reliable risk-reduction strategy that may significantly reduce fatalities and economic losses. Several machine learning methods have been examined for this purpose, underlying deep learning (DL) models’ remarkable prediction capabilities. The long short-term memory (LSTM) and gated recurrent unit (GRU) algorithms are the sole DL model studied in the extant comparisons. However, several other DL algorithms are suitable for time series forecasting tasks. In this paper, we assess, compare, and describe seven DL methods for forecasting future landslide displacement: multi-layer perception (MLP), LSTM, GRU, 1D convolutional neural network (1D CNN), 2xLSTM, bidirectional LSTM (bi-LSTM), and an architecture composed of 1D CNN and LSTM (Conv-LSTM). The investigation focuses on four landslides with different geographic locations, geological settings, time step dimensions, and measurement instruments. Two landslides are located in an artificial reservoir context, while the displacement of the other two is influenced just by rainfall. The results reveal that the MLP, GRU, and LSTM models can make reliable predictions in all four scenarios, while the Conv- LSTM model outperforms the others in the Baishuihe landslide, where the landslide is highly seasonal. No evident performance differences were found for landslides inside artificial reservoirs rather than outside. Furthermore, the research shows that MLP is better adapted to forecast the highest displacement peaks, while LSTM and GRU are better suited to model lower displacement peaks. We believe the findings of this research will serve as a precious aid when implementing a DL-based landslide early warning system (LEWS).es_ES
dc.description.sponsorshipSUPPORTO SCIENTIFICO PER L’OTTIMIZZAZIONE, IMPLEMENTAZIONE E GESTIONE DEL SISTEMA DI MONITORAGGIO CON AGGIORNAMENTO DELLE SOGLIE DI ALLERTAMENTO DEL FENOMENO FRANOSO DI SANT’ANDREA – PERAROLO DI CADORE (BL)” and the Spanish Grant “SARAI, PID2020-116540RB-C21,es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033” and “RISKCOASTes_ES
dc.description.sponsorshipInSAR displacement data of the El Arrecife landslidees_ES
dc.description.sponsorshipGeohazard Exploitation Platform (GEP) of the European Space Agencyes_ES
dc.description.sponsorshipNoR Projects Sponsorship (Project ID: 63737)es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLandslide hazardes_ES
dc.subjectRemote sensing es_ES
dc.subjectLandslide early warninges_ES
dc.subjectLandslide forecastinges_ES
dc.subjectArtificial intelligence es_ES
dc.titleLandslide displacement forecasting using deep learning and monitoring data across selected siteses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10346-023-02104-9
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional