Mostrar el registro sencillo del ítem

dc.contributor.authorAbellán Mulero, Joaquín 
dc.contributor.authorPérez Lara, Alejandro
dc.contributor.authorMoral García, Serafín 
dc.date.accessioned2023-07-24T07:59:40Z
dc.date.available2023-07-24T07:59:40Z
dc.date.issued2023-05-29
dc.identifier.citationAbellán, J.; Pérez-Lara, A.; Moral-García, S. A Variation of the Algorithm to Achieve the Maximum Entropy for Belief Functions. Entropy 2023, 25, 867. https://doi.org/10.3390/e25060867es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83943
dc.description.abstractEvidence theory (TE), based on imprecise probabilities, is often more appropriate than the classical theory of probability (PT) to apply in situations with inaccurate or incomplete information. The quantification of the information that a piece of evidence involves is a key issue in TE. Shannon’s entropy is an excellent measure in the PT for such purposes, being easy to calculate and fulfilling a wide set of properties that make it axiomatically the best one in PT. In TE, a similar role is played by the maximum of entropy (ME), verifying a similar set of properties. The ME is the unique measure in TE that has such axiomatic behavior. The problem of the ME in TE is its complex computational calculus, which makes its use problematic in some situations. There exists only one algorithm for the calculus of the ME in TE with a high computational cost, and this problem has been the principal drawback found with this measure. In this work, a variation of the original algorithm is presented. It is shown that with this modification, a reduction in the necessary steps to attain the ME can be obtained because, in each step, the power set of possibilities is reduced with respect to the original algorithm, which is the key point of the complexity found. This solution can provide greater applicability of this measure.es_ES
dc.description.sponsorshipUGR-FEDER funds under Project A-TIC-344-UGR20es_ES
dc.description.sponsorshipFEDER/Junta deAndalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades” under Project P20_00159es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBelief functionses_ES
dc.subjectUncertainty measureses_ES
dc.subjectMaximum of entropyes_ES
dc.titleA Variation of the Algorithm to Achieve the Maximum Entropy for Belief Functionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/e25060867
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional