Mostrar el registro sencillo del ítem

dc.contributor.authorMeeks III, William H.
dc.contributor.authorPérez Muñoz, Joaquín 
dc.date.accessioned2023-07-19T08:35:24Z
dc.date.available2023-07-19T08:35:24Z
dc.date.issued2023-05-08
dc.identifier.citationMeeks, William H. and Pérez, Joaquín. "Geometry of CMC surfaces of finite index" Advanced Nonlinear Studies, vol. 23, no. 1, 2023, pp. 20220063. [https://doi.org/10.1515/ans-2022-0063]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83857
dc.descriptionResearch of both authors was partially supported by MINECO/MICINN/FEDER grant no. PID2020-117868GB-I00, regional grants P18-FR-4049 and A-FQM-139-UGR18, and by the "Mariade Maeztu" Excellence Unit IMAG, reference CEX2020-001105-M, funded by MCINN/AEI/10.13039/501100011033/CEX2020-001105-M.es_ES
dc.description.abstractGiven r(0) > 0, I is an element of Nu boolean OR {0}, and K-0, H-0 >= 0, let X be a complete Riemannian 3-manifold with injectivity radius Inj(X) >= r(0) and with the supremum of absolute sectional curvature at most K-0, and let M (sic) X be a complete immersed surface of constant mean curvature H is an element of [0, H-0] and with index at most I. We will obtain geometric estimates for such an M (sic) X as a consequence of the hierarchy structure theorem. The hierarchy structure theorem (Theorem 2.2) will be applied to understand global properties of M (sic) X, especially results related to the area and diameter of M. By item E of Theorem 2.2, the area of such a noncompact M (sic) X is infinite. We will improve this area result by proving the following when M is connected; here, g(M) denotes the genus of the orientable cover of M: (1) There exists C-1 = C-1(I, r(0), K-0, H-0) > 0, such that Area(M) >= C-1(g(M) + 1). (2) There exist C 0 >, G (I) is an element of Nu independent of r(0), K-0, H-0, and also C independent of I such that if g(M) >= G(I), then Area (M) >= C/(max{1,1/r(0),root K-0, H-0})(2) (g(M) + 1). (3) If the scalar curvature rho of X satisfies 3H(2) +1/2 rho >= c in X for some c > 0, then there exist A, D > 0 depending on c, r(0), K-0, H-0 such that Area(M) <= A and Diameter(M) <= D. Hence, M is compact and, by item 1, g(M) <= A/C-1 - 1.es_ES
dc.description.sponsorshipMINECO/MICINN/FEDER PID2020-117868GB-I00es_ES
dc.description.sponsorship"Mariade Maeztu" Excellence Unit IMAG - MCINN/AEI CEX2020-001105-Mes_ES
dc.description.sponsorshipP18-FR-4049, A-FQM-139-UGR18es_ES
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConstant mean curvaturees_ES
dc.subjectFinite index H-surfaceses_ES
dc.subjectArea estimates for constant mean curvature surfaceses_ES
dc.subjectHierarchy structure theoremes_ES
dc.subjectBishop-Cheeger-Gromov relative volume comparison theoremes_ES
dc.subjectArea of hyperbolic annulies_ES
dc.titleGeometry of CMC surfaces of finite indexes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1515/ans-2022-0063
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional