Mostrar el registro sencillo del ítem

dc.contributor.authorArcoya Álvarez, David 
dc.contributor.authorSportelli, Caterina
dc.date.accessioned2023-07-17T09:55:35Z
dc.date.available2023-07-17T09:55:35Z
dc.date.issued2023-04-17
dc.identifier.citationArcoya, D., Sportelli, C. Relativistic equations with singular potentials. Z. Angew. Math. Phys. 74, 91 (2023). [https://doi.org/10.1007/s00033-023-01977-z]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83810
dc.descriptionFunding for open access publishing: Universidad de Granada/CBUAes_ES
dc.description.abstractThe first part of this paper concern with the study of the Lorentz force equation [GRAPHICS] in the relevant physical configuration where the electric field (E) over right arrow has a singularity in zero. By using Szulkin's critical point theory, we prove the existence of T-periodic solutions provided that T and the electric and magnetic fields interact properly. In the last part, we employ both a variational and a topological argument to prove that the scalar relativistic pendulum-type equation [GRAPHICS] admits at least a periodic solution when h is an element of L-1(0, T) and G is singular at zero.es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.description.sponsorshipSpanish Government PGC2018-096422-B-I00, PID2021-122122NB-I00es_ES
dc.description.sponsorshipJunta de Andalucia FQM-116es_ES
dc.description.sponsorshipMinistry of Education, Universities and Research (MIUR) 2017JPCAPN_005es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLorentz force equationes_ES
dc.subjectRelativistic pendulum equationes_ES
dc.subjectMountain pass theoremes_ES
dc.subjectGlobal continuation theoremes_ES
dc.titleRelativistic equations with singular potentialses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00033-023-01977-z
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional