Mostrar el registro sencillo del ítem

dc.contributor.authorZhang, Yudong
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2023-07-17T08:04:58Z
dc.date.available2023-07-17T08:04:58Z
dc.date.issued2023-05-27
dc.identifier.citationY. Zhang et al. Deep learning in food category recognition. Information Fusion 98 (2023) 101859[https://doi.org/10.1016/j.inffus.2023.101859]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83772
dc.description.abstractIntegrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationses_ES
dc.description.sponsorshipMRC (MC_PC_17171)es_ES
dc.description.sponsorshipRoyal Society (RP202G0230)es_ES
dc.description.sponsorshipBHF (AA/18/3/34220)es_ES
dc.description.sponsorshipHope Foundation for Cancer Research (RM60G0680)es_ES
dc.description.sponsorshipGCRF (P202PF11)es_ES
dc.description.sponsorshipSino-UK Industrial Fund (RP202G0289)es_ES
dc.description.sponsorshipLIAS (P202ED10es_ES
dc.description.sponsorshipData Science Enhancement Fund (P202RE237)es_ES
dc.description.sponsorshipFight for Sight (24NN201);es_ES
dc.description.sponsorshipSino-UK Education Fund (OP202006)es_ES
dc.description.sponsorshipBBSRC (RM32G0178B8)es_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMachine learninges_ES
dc.subjectDeep learninges_ES
dc.subjectData augmentationes_ES
dc.subjectFood category recognitiones_ES
dc.subjectComputer visiones_ES
dc.subjectSemi-supervised learninges_ES
dc.subjectConvolutional Neural Networkses_ES
dc.subjectTransfer learninges_ES
dc.titleDeep learning in food category recognitiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2023.101859
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional