Afficher la notice abrégée

dc.contributor.authorRodríguez Martínez, Iosu
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2023-07-10T11:45:18Z
dc.date.available2023-07-10T11:45:18Z
dc.date.issued2023
dc.identifier.citationI. Rodriguez-Martinez et al. Generalizing max pooling via (a, b)-grouping functions for Convolutional Neural Networks. Information Fusion 99 (2023) 101893. [https://doi.org/10.1016/j.inffus.2023.101893]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/83517
dc.descriptionFinancial support of Tracasa Instrumental (iTRACASA) and of the Gobierno de Navarra - Departamento de Universidad, Innovación y Transformación Digital, as well as that of the Spanish Ministry of Science (project PID2019-108392GB-I00 (AEI/10.13039/501100011033)) and the project PC095-096 FUSIPROD. T. Asmus and G.P. Dimuro are supported by the projects CNPq (301618/2019-4) and FAPERGS (19/2551-0001279-9). F. Herrera is supported by the Andalusian Excellence project P18-FR-4961. Z. Takáč is supported by grant VEGA 1/0267/21. Open access funding provided by Universidad Pública de Navarraes_ES
dc.description.abstractDue to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through “pooling” functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, “max-pooling” still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (a,b)-grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (a,b)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.es_ES
dc.description.sponsorshipAndalusian Excellence P18-FR-4961es_ES
dc.description.sponsorshipDepartamento de Universidad, Innovación y Transformación Digitales_ES
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico 301618/2019-4 CNPqes_ES
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul 19/2551-0001279-9 FAPERGSes_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación AEI/10.13039/501100011033, PC095-096 FUSIPROD, PID2019-108392GB-I00 MICINNes_ES
dc.description.sponsorshipVedecká Grantová Agentúra MŠVVaŠ SR a SAV 1/0267/21 VEGAes_ES
dc.description.sponsorshipUniversidad Pública de Navarra UPNAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConvolutional neural networkses_ES
dc.subjectGrouping functionses_ES
dc.subjectPooling functionses_ES
dc.subjectImage classificationes_ES
dc.titleGeneralizing max pooling via (a, b)-grouping functions for Convolutional Neural Networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2023.101893
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional