Show simple item record

dc.contributor.authorHauswirth, Laurent
dc.contributor.authorMenezes, Ana
dc.contributor.authorRodríguez Pérez, María Magdalena 
dc.date.accessioned2023-06-23T11:18:36Z
dc.date.available2023-06-23T11:18:36Z
dc.date.issued2022-08-25
dc.identifier.citationLaurent Hauswirth, Ana Menezes, Magdalena Rodríguez, Slab theorem and halfspace theorem for constant mean curvature surfaces in H 2 ×R. Rev. Mat. Iberoam. 39 (2023), no. 1, pp. 307–320 DOI 10.4171/RMI/1372es_ES
dc.identifier.urihttps://hdl.handle.net/10481/82771
dc.description.abstractWe prove that a properly embedded annular end of a surface in H 2 ×R with constant mean curvature 0 < H≤ 1 / 2 0<H≤1/2 can not be contained in any horizontal slab. Moreover, we show that a properly embedded surface with constant mean curvature 0 < H ≤ 1 / 2 0<H≤1/2 contained in H2 × [ 0 , + ∞ ) H 2 ×[0,+∞) and with finite topology is necessarily a graph over a simply connected domain of H 2 H 2 . For the case H = 1 / 2 H=1/2, the graph is entire.es_ES
dc.description.sponsorshipIMAG - María de Maeztu grant CEX2020-001105-M/ AEI/10.13039/501100011033, MICINN grant PID2020-117868GB-I00es_ES
dc.description.sponsorshipJunta de Andalucía grants A-FQM-139-UGR18 and P18-FR4049.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Matematical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSlab theorem and halfspace theorem for constant mean curvature surfaces in H2 x Res_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional