| dc.contributor.author | Hauswirth, Laurent | |
| dc.contributor.author | Menezes, Ana | |
| dc.contributor.author | Rodríguez Pérez, María Magdalena | |
| dc.date.accessioned | 2023-06-23T11:18:36Z | |
| dc.date.available | 2023-06-23T11:18:36Z | |
| dc.date.issued | 2022-08-25 | |
| dc.identifier.citation | Laurent Hauswirth, Ana Menezes, Magdalena Rodríguez, Slab theorem and halfspace theorem for constant mean curvature surfaces in H 2 ×R. Rev. Mat. Iberoam. 39 (2023), no. 1, pp. 307–320 DOI 10.4171/RMI/1372 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/82771 | |
| dc.description.abstract | We prove that a properly embedded annular end of a surface in H 2 ×R with constant mean curvature 0 < H≤ 1 / 2 0<H≤1/2 can not be contained in any horizontal slab. Moreover, we show that a properly embedded surface with constant mean curvature 0 < H ≤ 1 / 2 0<H≤1/2 contained in H2 × [ 0 , + ∞ ) H 2 ×[0,+∞) and with finite topology is necessarily a graph over a simply connected domain of H 2 H 2 . For the case H = 1 / 2 H=1/2, the graph is entire. | es_ES |
| dc.description.sponsorship | IMAG - María de Maeztu grant CEX2020-001105-M/
AEI/10.13039/501100011033, MICINN grant PID2020-117868GB-I00 | es_ES |
| dc.description.sponsorship | Junta de Andalucía
grants A-FQM-139-UGR18 and P18-FR4049. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | European Matematical Society | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.title | Slab theorem and halfspace theorem for constant mean curvature surfaces in H2 x R | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.type.hasVersion | VoR | es_ES |