Afficher la notice abrégée

dc.contributor.authorLamata, Lucas
dc.date.accessioned2023-06-12T08:22:36Z
dc.date.available2023-06-12T08:22:36Z
dc.date.issued2023-05
dc.identifier.citationLamata, L. (2023). Quantum Machine Learning Implementations: Proposals and Experiments. Advanced Quantum Technologies, 2300059. [DOI: 10.1002/qute.202300059]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/82332
dc.description.abstractThis article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning can be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society. Therefore, it is necessary to push forward initial quantum implementations of this technology, in noisy intermediate-scale quantum computers, aiming for achieving fruitful calculations in machine learning that are better than with any other current or future computing paradigmes_ES
dc.description.sponsorshipJunta de Andalucia P20-00617 US-1380840es_ES
dc.description.sponsorshipSpanish Government PID2019-104002GB-C21 PID2019-104002GB-C22es_ES
dc.language.isoenges_ES
dc.publisherWyleyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectImplementations of quantum informationes_ES
dc.subjectQuantum artificial intelligencees_ES
dc.subjectQuantum machine learninges_ES
dc.subjectQuantum photonicses_ES
dc.subjectQuantum technologieses_ES
dc.subjectSuperconducting circuitses_ES
dc.titleQuantum Machine Learning Implementations: Proposals and Experimentses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/qute.202300059
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional