Approximation via gradients on the ball. The Zernike case
Metadatos
Mostrar el registro completo del ítemAutor
Marriaga, Misael E.; Pérez Fernández, Teresa Encarnación; Piñar González, Miguel Ángel; Recarte, Marlon J.Editorial
Elsevier
Materia
Approximation on the ball Inner product via gradient Fourier expansions
Fecha
2023Referencia bibliográfica
M.E. Marriaga, T.E. Pérez, M.A. Piñar et al. Approximation via gradients on the ball. The Zernike case. Journal of Computational and Applied Mathematics 430 (2023) 115258[https://doi.org/10.1016/j.cam.2023.115258]
Patrocinador
Ministerio de Ciencia, Innovacion y Universidades (MICINN), Spain PGC2018-096504-B-C33; Comunidad de Madrid; Universidad Rey Juan Carlos, Spain M2731; FEDER/Junta de Andalucia, Spain A-FQM-246-UGR20; MCIN/AEI; FEDER, Spain funds PGC2018-094932-B-I00; IMAG-Maria de Maeztu, Spain CEX2020-001105-MResumen
In this work, we deal in a d dimensional unit ball equipped with an inner product
constructed by adding a mass point at zero to the classical ball inner product applied to
the gradients of the functions. Apart from determining an explicit orthogonal polynomial
basis, we study approximation properties of Fourier expansions in terms of this basis.
In particular, we deduce relations between the partial Fourier sums in terms of the
new orthogonal polynomials and the partial Fourier sums in terms of the classical ball
polynomials. We also give an estimate of the approximation error by polynomials of
degree at most n in the corresponding Sobolev space, proving that we can approximate
a function by using its gradient. Numerical examples are given to illustrate the
approximation behavior of the Sobolev basis.