Mostrar el registro sencillo del ítem

dc.contributor.authorWu, Wen
dc.contributor.authorChiachío Ruano, Manuel 
dc.date.accessioned2023-05-31T10:35:45Z
dc.date.available2023-05-31T10:35:45Z
dc.date.issued2023-04-21
dc.identifier.citationWu, W.; Cantero-Chinchilla, S.; Yan, W.-j.; Chiachio Ruano, M.; Remenyte-Prescott, R.; Chronopoulos, D. Damage Quantification and Identification in Structural Joints through Ultrasonic Guided Wave-Based Features and an Inverse Bayesian Scheme. Sensors 2023, 23, 4160. [https://doi.org/10.3390/s23084160]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/82054
dc.description.abstractIn this paper, defect detection and identification in aluminium joints is investigated based on guided wave monitoring. Guided wave testing is first performed on the selected damage feature from experiments, namely, the scattering coefficient, to prove the feasibility of damage identification. A Bayesian framework based on the selected damage feature for damage identification of three- dimensional joints of arbitrary shape and finite size is then presented. This framework accounts for both modelling and experimental uncertainties. A hybrid wave and finite element approach (WFE) is adopted to predict the scattering coefficients numerically corresponding to different size defects in joints. Moreover, the proposed approach leverages a kriging surrogate model in combination with WFE to formulate a prediction equation that links scattering coefficients to defect size. This equation replaces WFE as the forward model in probabilistic inference, resulting in a significant enhancement in computational efficiency. Finally, numerical and experimental case studies are used to validate the damage identification scheme. An investigation into how the location of sensors can impact the identified results is provided as well.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 Marie Skłodowska-Curie 859957es_ES
dc.description.sponsorshipScience and Technology Development Fund, Macau SAR (File No.: FDCT/0101/2021/A2, FDCT/001/2021/AGJ and SKL-IOTSC(UM)-2021-2023)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGuided waveses_ES
dc.subjectJoints/bounded structureses_ES
dc.subjectDamage identificationes_ES
dc.subjectBayesian inferencees_ES
dc.subjectHybrid wave and finite elementes_ES
dc.subjectSurrogate modeles_ES
dc.titleDamage Quantification and Identification in Structural Joints through Ultrasonic Guided Wave-Based Features and an Inverse Bayesian Schemees_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/859957es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s23084160
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional