Mostrar el registro sencillo del ítem

dc.contributor.authorSáez Muñoz, José Antonio 
dc.date.accessioned2023-05-25T11:19:22Z
dc.date.available2023-05-25T11:19:22Z
dc.date.issued2023-05
dc.identifier.citationS aez JA. Noise simulation in classification with the noisemodel R package: Applications analyzing the impact of errors with chemical data. Journal of Chemometrics. 2023;37(5):e3472. [doi:10.1002/cem.3472]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81835
dc.description.abstractClassification datasets created from chemical processes can be affected by errors, which impair the accuracy of the models built. This fact highlights the importance of analyzing the robustness of classifiers against different types and levels of noise to know their behavior against potential errors. In this con- text, noise models have been proposed to study noise-related phenomenology in a controlled environment, allowing errors to be introduced into the data in a supervised manner. This paper introduces the noisemodel R package, which contains the first extensive implementation of noise models for classification datasets, proposing it as support tool to analyze the impact of errors related to chemical data. It provides 72 noise models found in the specialized literature that allow errors to be introduced in different ways in classes and attributes. Each of them is properly documented and referenced, unifying their results through a specific S3 class, which benefits from customized print, summary and plot methods. The usage of the package is illustrated through four applica- tion examples considering real-world chemical datasets, where errors are prone to occur. The software presented will help to deepen the understanding of the problem of noisy chemical data, as well as to develop new robust algo- rithms and noise preprocessing methods properly adapted to different types of errors in this scenario.es_ES
dc.description.sponsorshipUniversity of Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAttribute noisees_ES
dc.subjectChemical dataes_ES
dc.subjectClassificationes_ES
dc.subjectLabel noisees_ES
dc.subjectNoise modelses_ES
dc.titleNoise simulation in classification with the noisemodel R package: Applications analyzing the impact of errors with chemical dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/cem.3472
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional