Afficher la notice abrégée

dc.contributor.authorPrados Garzón, Jonathan 
dc.contributor.authorTaleb, Tarik
dc.contributor.authorBagaa, Miloud
dc.date.accessioned2023-05-23T11:03:36Z
dc.date.available2023-05-23T11:03:36Z
dc.date.issued2023-03-01
dc.identifier.citationPublished version: J. Prados-Garzon, T. Taleb and M. Bagaa, "Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics," in IEEE Transactions on Mobile Computing, vol. 22, no. 3, pp. 1672-1687, 1 March 2023, doi: 10.1109/TMC.2021.3099979es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81764
dc.descriptionThis research work was supported in part by the Euro- pean Union’s Horizon 2020 Research and Innovation Program under the “Cloud for Holography and Augmented Reality (CHARITY)” Project under Agreement 101016509, and 5G- CLARITY Project under Agreement 871428. It is also partially supported by the Spanish national research project TRUE5G: PID2019-108713RB-C53.es_ES
dc.description.abstractTime-Sensitive Networking (TSN) and Deterministic Networking (DetNet) technologies are increasingly recognized as key levers of the future 5G transport networks (TNs) due to their capabilities for providing deterministic Quality-of-Service and enabling the coexistence of critical and best-effort services. Addi- tionally, they rely on programmable and cost-effective Ethernet- based forwarding planes. This article addresses the flow alloca- tion problem in 5G backhaul networks realized as asynchronous TSN networks, whose building block is the Asynchronous Traffic Shaper. We propose an offline solution, dubbed “Next Generation Transport Network Optimizer” (NEPTUNO), that combines ex- act optimization methods and heuristic techniques and leverages data analytics to solve the flow allocation problem. NEPTUNO aims to maximize the flow acceptance ratio while guaranteeing the deterministic Quality-of-Service requirements of the critical flows. We carried out a performance evaluation of NEPTUNO regarding the degree of optimality, execution time, and flow rejection ratio. Furthermore, we compare NEPTUNO with a novel online baseline solution for two different optimization goals. Online methods compute the flow’s allocation configuration right after the flow arrives at the network, whereas offline solutions like NEPTUNO compute a long-term configuration allocation for the whole network. Our results highlight the potential of data analytics for the self-optimization of the future 5G TNs.es_ES
dc.description.sponsorshipUnion’s Horizon 2020, 101016509es_ES
dc.description.sponsorship5G-CLARITY 871428es_ES
dc.description.sponsorshipTRUE5G: PID2019-108713RB-C53.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Computer Soces_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTransport Networkses_ES
dc.subjectQoSes_ES
dc.subjectPerformance guaranteeses_ES
dc.subjectFlow Allocationes_ES
dc.subjectTime-Sensitive Networking (TSN)es_ES
dc.subject5Ges_ES
dc.subjectData analyticses_ES
dc.subjectAsynchronous Traffic Shaper (ATS)es_ES
dc.subjectIEEE 802.1Qcres_ES
dc.titleOptimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analyticses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101016509es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TMC.2021.3099979
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional