Afficher la notice abrégée

dc.contributor.authorD’Ambrosi, Silvia
dc.contributor.authorGiannoukakos, Stavros Panagiotis 
dc.contributor.authorM Potie, Nicolas Thierry 
dc.contributor.authorHackenberg, Michael
dc.contributor.authorFernández Hilario, Alberto Luis 
dc.date.accessioned2023-05-16T08:17:30Z
dc.date.available2023-05-16T08:17:30Z
dc.date.issued2023-03-02
dc.identifier.citationD’Ambrosi, S.; Giannoukakos, S.; Antunes-Ferreira, M.; Pedraz-Valdunciel, C.; Bracht, J.W.P.; Potie, N.; Gimenez-Capitan, A.; Hackenberg, M.; Fernandez Hilario, A.; Molina-Vila, M.A.; et al. Combinatorial Blood Platelets-Derived circRNA and mRNA Signature for Early-Stage Lung Cancer Detection. Int. J. Mol. Sci. 2023, 24, 4881. [https://doi.org/ 10.3390/ijms24054881]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81568
dc.descriptionThe following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms24054881/s1.es_ES
dc.description.abstractDespite the diversity of liquid biopsy transcriptomic repertoire, numerous studies often exploit only a single RNA type signature for diagnostic biomarker potential. This frequently results in insufficient sensitivity and specificity necessary to reach diagnostic utility. Combinatorial biomarker approaches may offer a more reliable diagnosis. Here, we investigated the synergistic contributions of circRNA and mRNA signatures derived from blood platelets as biomarkers for lung cancer detection. We developed a comprehensive bioinformatics pipeline permitting an analysis of platelet- circRNA and mRNA derived from non-cancer individuals and lung cancer patients. An optimal selected signature is then used to generate the predictive classification model using machine learning algorithm. Using an individual signature of 21 circRNA and 28 mRNA, the predictive models reached an area under the curve (AUC) of 0.88 and 0.81, respectively. Importantly, combinatorial analysis including both types of RNAs resulted in an 8-target signature (6 mRNA and 2 circRNA), enhancing the differentiation of lung cancer from controls (AUC of 0.92). Additionally, we identified five biomarkers potentially specific for early-stage detection of lung cancer. Our proof-of-concept study presents the first multi-analyte-based approach for the analysis of platelets-derived biomarkers, providing a potential combinatorial diagnostic signature for lung cancer detection.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie 765492.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLiquid biopsyes_ES
dc.subjectBiomarkerses_ES
dc.subjectCircular RNAes_ES
dc.subjectMessenger RNAes_ES
dc.subjectPlateletses_ES
dc.subjectLung canceres_ES
dc.subjectCancer diagnosises_ES
dc.titleCombinatorial Blood Platelets-Derived circRNA and mRNA Signature for Early-Stage Lung Cancer Detectiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/765492es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ijms24054881
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional