Afficher la notice abrégée

dc.contributor.authorde Souza, Luísa C.
dc.contributor.authorDe Melo Barbosa, Raquel
dc.date.accessioned2023-05-12T07:10:52Z
dc.date.available2023-05-12T07:10:52Z
dc.date.issued2023-03-11
dc.identifier.citationde Souza et al. New proposal of viral genome representation applied in the classification of SARS-CoV-2 with deep learning. BMC Bioinformatics (2023) 24:92 [https://doi.org/10.1186/s12859-023-05188-1]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81475
dc.descriptionThe authors wish to acknowledge the financial support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support.es_ES
dc.description.abstractBackgroundIn December 2019, the first case of COVID-19 was described in Wuhan, China, and by July 2022, there were already 540 million confirmed cases. Due to the rapid spread of the virus, the scientific community has made efforts to develop techniques for the viral classification of SARS-CoV-2.ResultsIn this context, we developed a new proposal for gene sequence representation with Genomic Signal Processing techniques for the work presented in this paper. First, we applied the mapping approach to samples of six viral species of the Coronaviridae family, which belongs SARS-CoV-2 Virus. We then used the sequence downsized obtained by the method proposed in a deep learning architecture for viral classification, achieving an accuracy of 98.35%, 99.08%, and 99.69% for the 64, 128, and 256 sizes of the viral signatures, respectively, and obtaining 99.95% precision for the vectors with size 256.ConclusionsThe classification results obtained, in comparison to the results produced using other state-of-the-art representation techniques, demonstrate that the proposed mapping can provide a satisfactory performance result with low computational memory and processing time costs.es_ES
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCOVID-19es_ES
dc.subjectSARS-CoV-2es_ES
dc.subjectGSPes_ES
dc.subjectCGR DFTes_ES
dc.subjectDeep learninges_ES
dc.titleNew proposal of viral genome representation applied in the classification of SARS-CoV-2 with deep learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1186/s12859-023-05188-1
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional