Afficher la notice abrégée

dc.contributor.authorAbadía, Ignacio
dc.contributor.authorNaveros, Francisco
dc.contributor.authorRos, Eduardo
dc.contributor.authorCarrillo, Richard
dc.contributor.authorLuque, Niceto
dc.date.accessioned2023-05-11T09:57:35Z
dc.date.available2023-05-11T09:57:35Z
dc.date.issued2021-09-08
dc.identifier.urihttps://hdl.handle.net/10481/81462
dc.descriptionThis work was supported by European Union Human Brain Project Specific Grant Agreement 3 (H2020-RIA. 945539); European Union Neuro Cerebellar Recurrent Network for Motor Sequence Learning in Neurorobotics: NEUSEQBOT (891774); European Union and Junta de Andalucía, CEREBIO (P18-FR-2378); FEDER-Junta de Andalucía (A-TIC-276-UGR18); and the National Grants INTSENSO & SPIKEAGE (MICINN-FEDER-PID2019-109991GB-I00 & PID2020-113422GA-I00).es_ES
dc.description.abstractThe presence of computation and transmission-variable time delays within a robotic control loop is a major cause of instability, hindering safe human-robot interaction (HRI) under these circumstances. Classical control theory has been adapted to counteract the presence of such variable delays; however, the solutions provided to date cannot cope with HRI robotics inherent features. The highly nonlinear dynamics of HRI cobots (robots intended for human interaction in collaborative tasks), together with the growing use of flexible joints and elastic materials providing passive compliance, prevent traditional control solutions from being applied. Conversely, human motor control natively deals with low power actuators, nonlinear dynamics, and variable transmission time delays. The cerebellum, pivotal to human motor control, is able to predict motor commands by correlating current and past sensorimotor signals, and to ultimately compensate for the existing sensorimotor human delay (tens of milliseconds). This work aims at bridging those inherent features of cerebellar motor control and current robotic challenges—namely, compliant control in the presence of variable sensorimotor delays. We implement a cerebellar-like spiking neural network (SNN) controller that is adaptive, compliant, and robust to variable sensorimotor delays by replicating the cerebellar mechanisms that embrace the presence of biological delays and allow motor learning and adaptation.es_ES
dc.description.sponsorshipEuropean Union Human Brain Project Specific Grant Agreement 3 (H2020-RIA. 945539)es_ES
dc.description.sponsorshipEuropean Union Neuro Cerebellar Recurrent Network for Motor Sequence Learning in Neurorobotics: NEUSEQBOT (891774)es_ES
dc.description.sponsorshipEuropean Union and Junta de Andalucía, CEREBIO (P18-FR-2378)es_ES
dc.description.sponsorshipFEDER-Junta de Andalucía (A-TIC-276-UGR18)es_ES
dc.description.sponsorshipNational Grants INTSENSO & SPIKEAGE (MICINN-FEDER-PID2019-109991GB-I00 & PID2020-113422GA-I00)es_ES
dc.language.isoenges_ES
dc.subjectCerebellumes_ES
dc.subjectNeuroroboticses_ES
dc.subjectClosed-loop controles_ES
dc.subjectCommunication delayses_ES
dc.titleA cerebellar-based solution to the nondeterministic time delay problem in robotic controles_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/945539es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/NEUSEQBOT 891774es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1126/scirobotics.abf2756
dc.type.hasVersionAOes_ES


Fichier(s) constituant ce document

[PDF]
[mp4]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée