Mostrar el registro sencillo del ítem

dc.contributor.authorWasielewska, Katarzyna
dc.contributor.authorSoukup, Dominik
dc.contributor.authorCejka, Tomas
dc.contributor.authorCamacho Páez, José 
dc.date.accessioned2023-04-24T07:50:11Z
dc.date.available2023-04-24T07:50:11Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/10481/81204
dc.description.abstractMachine learning is recognised as a relevant approach to detect attacks and other anomalies in network traffic. However, there are still no suitable network datasets that would enable effective detection. On the other hand, the preparation of a network dataset is not easy due to privacy reasons but also due to the lack of tools for assessing their quality. In a previous paper, we proposed a new method for data quality assessment based on permutation testing. This paper presents a parallel study on the limits of detection of such an approach. We focus on the problem of network flow classification and use well-known machine learning techniques. The experiments were performed using publicly available network datasets.es_ES
dc.description.sponsorshipThis work is partially funded by the European Union’s Horizon 2020 research, innovation programme under the Marie Sk lodowska-Curie grant agreement No 893146, by the Agencia Estatal de Investigaci´on in Spain, grant No PID2020- 113462RB-I00, and by the Ministry of Interior of the Czech Republic (Flow- Based Encrypted Traffic Analysis) under grant number VJ02010024. The authors would like to thank Szymon Wojciechowski for his support on the Weles tool.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2022, 4th Workshop on Machine Learning for Cybersecurity (MLCS)es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_EN
dc.subjectDataset quality assessmentes_ES
dc.subjectPermutation testinges_ES
dc.subjectNetwork datasetes_ES
dc.subjectNetwork securityes_ES
dc.subjectAttack detectiones_ES
dc.subjectMachine learninges_ES
dc.subjectClassificationes_ES
dc.titleEvaluation of the Limit of Detection in Network Dataset Quality Assessment with PerQoDAes_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License