Mostrar el registro sencillo del ítem

dc.contributor.authorQuinteros, Leonel
dc.contributor.authorGarcía Macías, Enrique 
dc.contributor.authorMartínez Pañeda, Emilio
dc.date.accessioned2023-04-13T07:25:49Z
dc.date.available2023-04-13T07:25:49Z
dc.date.issued2023
dc.identifier.citationL. Quinteros, E. García-Macías and E. Martínez-Pañeda. Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites. Comput. Methods Appl. Mech. Engrg. 407 (2023) 115941 [https://doi.org/10.1016/j.cma.2023.115941]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81029
dc.description.abstractWe present a novel computational framework to simulate the electromechanical response of self-sensing carbon nanotube (CNT)-based composites experiencing fracture. The computational framework combines electrical-deformation-fracture finite element modelling with a mixed micromechanics formulation. The latter is used to estimate the constitutive properties of CNT-based composites, including the elastic tensor, fracture energy, electrical conductivity, and linear piezoresistive coefficients. These properties are inputted into a coupled electro-structural finite element model, which simulates the evolution of cracks based upon phase-field fracture. The coupled physical problem is solved in a monolithic manner, exploiting the robustness and efficiency of a quasi-Newton algorithm. 2D and 3D boundary value problems are simulated to illustrate the potential of the modelling framework in assessing the influence of defects on the electromechanical response of meso- and macro-scale smart structures. Case studies aim at shedding light into the interplay between fracture and the electromechanical material response and include parametric analyses, validation against experiments and the simulation of complex cracking conditions (multiple defects, crack merging). The presented numerical results showcase the efficiency and robustness of the computational framework, as well as its ability to model a large variety of structural configurations and damage patterns. The deformation-electrical-fracture finite element code developed is made freely available to download.es_ES
dc.description.sponsorshipNational Agency for Research and Development (ANID), Chile/Scholarship Program/DOCTORADO BECAS CHILE/2020 - 72210161es_ES
dc.description.sponsorshipConsejería de Transformación Económica, Conocimiento, Empresas y Universidades de la Junta de Andalucía (Spain) through the research project P18-RT-3128es_ES
dc.description.sponsorshipUKRI Future Leaders Fellowship (grant MR/V024124/1)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCarbon nanotubes (CNTs)es_ES
dc.subjectFinite Element Analysises_ES
dc.subjectSmart materialses_ES
dc.subjectFracture es_ES
dc.subjectPhase fieldes_ES
dc.subjectPiezoresistivityes_ES
dc.titleElectromechanical phase-field fracture modelling of piezoresistive CNT-based compositeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.cma.2023.115941
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional