Mostrar el registro sencillo del ítem

dc.contributor.authorPrados Garzón, Jonathan 
dc.contributor.authorChinchilla Romero, Lorena 
dc.contributor.authorMuñoz Luengo, Pablo 
dc.contributor.authorAmeigeiras Gutiérrez, Pablo José 
dc.contributor.authorRamos Muñoz, Juan José 
dc.date.accessioned2023-03-30T12:24:59Z
dc.date.available2023-03-30T12:24:59Z
dc.date.issued2022-09-08
dc.identifier.citationPrados-Garzon, Jonathan, Chinchilla-Romero, Lorena, Muñoz, Pablo, Ameigeiras, Pablo, & Ramos-Munoz, Juan J. (2022, September 8). Leveraging DRL for Traffic Prioritization in 5G and Beyond TSN-based Transport Networks. XXXVII Symposium of the International Union of Radio Science (URSI 2022), Malaga, Spain. https://doi.org/10.5281/zenodo.7060474es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80955
dc.descriptionThis paper has been presented in XXXVII Symposium of the International Union of Radio Science (URSI) 2022 celebrated in Malaga (Spain) from 5th to 7th September. This work includes a preliminary design and proof-of-concept to apply Reinforcement Learning for computing long-term configurations in asynchronous Time-Sensitive Networking (TSN)-based 5G and beyond transport networks. Most of this work has been carried out within the European 5G-CLARITY project (https://www.5gclarity.com/).es_ES
dc.description.abstractTime-Sensitive Networking (TSN) is expected to become a key layer 2 technology for 5G and Beyond (5GB) transport networks (TN) as it allows for services with stringent and deterministic quality-of-service constraints and their coexistence with non-performance-sensitive traffic. Autonomous solutions for configuring TSN-based TNs are essential to ensure the deterministic QoS requisites of the 5GB streams while facilitating the zero-touch management of the network and reducing the operational costs. However, due to the configuration flexibility offered by TSN networks, using exact optimization methods to develop such solutions usually results in algorithms with high computational complexity. In this work, we propose and evaluate an initial design of a Reinforcement Learning (RL)-based solution for the long-term configuration of asynchronous TSN-based 5GB TNs. We successfully validated the proper operation of the proposal for an industrial private 5G scenario.es_ES
dc.description.sponsorshipH2020 research and innovation project 5G-CLARITY (Grant No. 871428)es_ES
dc.description.sponsorshipTRUE5G (PID2019- 108713RB-C53)es_ES
dc.description.sponsorship6G-CHRONOS (TSI-063000-2021-28)es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDRLes_ES
dc.subjectTime-Sensitive Networking (TSN)es_ES
dc.subjectAsynchronous Traffic Shapees_ES
dc.subject5Ges_ES
dc.subjectTransport Networkses_ES
dc.titleLeveraging DRL for Traffic Prioritization in 5G and Beyond TSN-based Transport Networkses_ES
dc.typeconference outputes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/5G-CLARITY 871428es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.5281/zenodo.7060473
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional